Телевизоры. Приставки. Проекторы и аксессуары. Технологии. Цифровое ТВ

Сетевая безопасность. Вместо введения. Общие сведения о безопасности в компьютерных сетях. Модификация потока данных - атака "man in the middle"

Тема 3.6. Информационная безопасность сетевой технологии работы – 1 час.

Понятие информационной безопасности при работе в компьютерной сети. Организационные меры информационной безопасности. Защита информации с помощью антивирусных программ. Персональные сетевые фильтры. Понятие и назначение брандмауэра (файрвола). Достоверность информации интернет-ресурсов.

Учащиеся должны знать:


  • меры информационной безопасности при работе в сети;

  • программные и аппаратные средства для обеспечения безопасности информации.
Учащиеся должны уметь:

  • выполнять основные организационные меры информационной безопасности;

  • производить автоматическое обновление антивирусных программ;

  • соблюдать рекомендации по получению достоверной информации.

Раздел 4. Информационная технология представления информации в виде презентаций в среде Power Point – 8 часов
Тема 4.1. Возможности программной среды подготовки презентаций Microsoft Power Point

Возможности и область использования приложения Power Point. Типовые объекты презентации. Группы инструментов среды Power Point. Запуск и настройка приложения Power Point. Назначение панелей инструментов. Особенности интерфейса приложения Power Point.

Учащиеся должны знать:

Тема 4.2. Практикум. Информационная технология создания презентации с помощью Мастера автосодержания - 4 часа

Понятие шаблона презентации. Постановка проблемы на конкретном примере. Выделение этапов создания презентации. I этап - создание фона. II этап - создание текста. III этап - вставка рисунков в презентацию. IV этап - создания анимации текста. V этап - настройка анимации рисунков. VI этап - запуск и отладка презентации. Вставка звука и видеоклипов в презентацию. Настройка эффектов анимации.

Создание элементов управления презентацией: настройка интерактивного оглавления с помощью гиперссылок; обеспечение возврата к оглавлению; добавления гиперссылок на документы Word; добавление управляющих кнопок на все слайды

Учащиеся должны знать:


  • основные объекты презентации;

  • назначение и виды шаблонов презентации;

  • основные элементы управления презентаций;

  • технологию работы с каждым объектом презентации.
Учащиеся должны уметь:

  • создавать и оформлять слайды;

  • изменять настройки слайда;

  • выбирать и настраивать анимацию текста, картинки;

  • вставлять в презентацию звук и видеоклип;

  • создавать управляющие элементы презентации.
Тема 4.3. Практикум. Информационная технология создания презентации – 4 часа

Создание учебного комплекса «Компьютер и здоровье школьника». Постановка проблемы на конкретном примере. Использование ресурсов Интернета для отбора необходимой информации. Технология создания презентации. Работа с сортировщиком слайдов.

Учащиеся должны знать:


  • назначение и основное содержание нормативных документов СанПиНа по работе на компьютерах;

  • технологию работы в приложении Power Point.
Учащиеся должны уметь:

  • самостоятельно отобрать необходимую информацию для выбранной темы презентации, воспользовавшись ресурсами Интернета;

  • создать презентацию на любую тему;

  • пользоваться Сортировщиком слайдов.

Раздел 5. Информационная технология обработки данных в среде табличного процессора Excel.

Тема 5.1. Статистическая обработка массива данных и построение диаграмм.

Статистическое исследование массива данных на примере решения: задачи обработки результатов вступительных экзаменов; определение среднего балла;

Учащиеся должны знать:


  • назначение и правила формирования логических и простейших статистических функций;

  • представление результатов статистической обработки в виде разнотипных диаграмм;

  • как правильно структурировать информацию для статистической обработки данных и их анализа.
Учащиеся должны уметь

  • применять технологию формирования логических и простейших статистических функций;

  • использовать технологию представления информации в виде диаграмм;

  • проводить анализ полученных результатов обработки массива данных.

Раздел 6. Информационная технология разработки проекта.

Тема 6.1. представление об основных этапах разработки проекта

Понятие проекта. Примеры проектов. Классификация проектов: по сфере использования: по продолжительности; по сложности и масштабу. Основные этапы разработки проекта: замысел проекта; планирование; контроль и анализ. Характеристика основных этапов. Понятие структуры проекта как разновидности информационной модели. Цель разработки информационной модели. Итерационный процесс создания структуры проекта.

Учащиеся должны знать:

Учащиеся должны уметь

  • приводить примеры различных проектов и относить их к определенному классу;

  • объяснять суть определенных этапов разработки проектов;

  • выделять основную цель проекта
Тема 6.2. Базовые информационные модели проекта.

Информационная модель проекта в виде дерева целей. Общий вид структуры дерева целей. декомпозиция цели. Построение дерева целей на примере проекта ремонта школы. информационная модель проекта в виде структуры продукта. Общий вид структуры. Построение структуры продукта на примере проекта ремонта школы. Информационная модель проекта в виде структуры разбиения работ. Информационная модель проекта в виде матрицы ответственности.

Учащиеся должны знать:


  • виды информационных моделей проекта;

  • правила построения структуры дерева целей;

  • правила построения структуры продукции;

  • правила построения структуры разбиения работ

  • правила построения матрицы ответственности.
Учащиеся должны уметь

  • разработатьдерева целей проекта;

  • разработать структуры продукции проекта;

  • разработать структуры разбиения работ проекта;

  • разработать матрицу ответственности по работам проекта;
Тема 6.3. Разработка информационных моделей социального проекта «Жизнь без сигареты»

Понятие замысла проекта. Уточнение и детализация замысла социального проекта, направленного на борьбу с курением школьников, в форме вопросов и ответов. Анализ социальной проблемы, связанной с курением школьников. Составление предварительного плана работы по проекту.

Построение дерева целей проекта, структуры информационного продукта проекта, структуры разбиения работ проекта, матрицы ответственности.

Учащиеся должны знать:


  • содержание теоретической части разработки проекта;

  • как определять замысел проекта;
Учащиеся должны уметь

  • анализировать среду, для которой будет разрабатываться проект;

  • разрабатывать информационные модели проекта.
Тема 6.4. Информационная технология создания социального проекта «Жизнь без сигареты»

Практикум (на базе материалов, найденных в Интернете). Подготовка рефератов по теме «О вреде курения» с позиции основных предметных областей: истории, химии, биологии, экономики, литературы, обществоведения социологии, психологии.

Подготовка материалов о проблемах курильщиков, с которыми они обращаются к врачам.

Учащиеся должны уметь


  • осуществлять расширенный поиск информационных ресурсов в Интернете;

  • подготовить материал о вреде курения;

  • разработать необходимые формы анкет для проведения опроса;

  • обработать статистические данные, отображенные в анкетах

Раздел 7. Основы программирования в среде Visual Basic – 9 часов

Тема 7.1. Основные понятия и инструментарий среды Visual Basic

Обобщенный вид информационной модели объекта. Понятия события и метода.

Представление о среде разработки проекта Visual Basic .

Интерфейс среды. Интерфейс среды. Назначение основных вкладок. Технология работы с окнами. Окно редактора кода программы. Окно проводника проекта. Окно свойств объекта. Окно-интерпретатор.

Учащиеся должны знать:


  • что такое объект и чем он характеризуется в среде Visual Basic;

  • что такое событие и метод;

  • в чем состоит процесс создания приложения в Visual Basic
Учащиеся должны уметь

  • изменять состав среды разработки проекта; использовать различные способы управления окнами.

Тема 7.2. Технология работы с формой и графическими методами

Понятие и назначение формы. Технология задания и редактирования свойств формы. Использование событий и методов формы для вывода текста. Назначение графических методов. Синтаксис графических методов Line и Circle. Технология выполнения задания по выводу простейших графических объектов на форме.
Учащиеся должны знать:


  • назначение формы;

  • назначение графических методов и их синтаксис .
Учащиеся должны уметь

  • изменять свойства формы в окне свойств различными способами;

  • программно изменять свойства формы;

  • применять графические методы Line и Circle;

  • писать программу обработки различных событий: Click, DblClick, KeyPress.

Тема 7.3. Оператор присваивания и ввод данных

Понятие переменной и ее значение в программе. Синтаксис оператора присваивания. Синтаксис оператора ввода данных. Программа рисования окружности и вывода расчетных параметров. Программа рисования прямоугольников.

Учащиеся должны уметь:


  • пользоваться переменными в программах;

  • использовать оператор присваивания;

  • вводить данные при помощи функции InputBox().

Тема 7.4. Управляющие элементы: метка, текстовое окно, кнопка

Управляющие элементы. Назначение управляющих элементов – метка, текстовое окно, кнопка.

Учащиеся должны знать:


  • назначение и виды управляющих переменных

  • Области определения переменной
Учащиеся должны уметь

  • Создавать и использовать метки для отображения текстовой информации;

  • Программировать различные отклики при щелчке на метке

  • Создавать текстовые окна и изменять их свойства

  • Вводить данные в текстовые окна различными способами;

  • Создавать и использовать кнопки.

Тема 7.5. Процедуры и функции

Назначение вспомогательного алгоритма. Понятие процедуры. Синтаксис процедуры. Технология написания процедуры без параметров, с параметрами. Программа рисования ромба. стандартные функции. Синтаксис функции. Технология создания и использования функции. использование процедур и функций с параметрами на примере создания программы расчета медианы треугольника

Учащиеся должны знать:


  • Понятие, назначение и синтаксис процедуры;

  • Назначение и использование параметров процедуры;

  • Понятие, назначение и синтаксис функции.
Учащиеся должны уметь:

  • Создавать процедуры с параметрами и без параметров;

  • Вызывать процедуры из основной программы;

  • Задавать фактические параметры различных видов при вызове процедуры;

  • Использовать в программах стандартные функции.

Тематическое планирование учебного материала 10 класс

(базовый курс) – 2 ч/нед., 68 ч./год


Наименование

час.

Часть 1. Информационная картина мира -18 ч.

Раздел 1. Информационные процессы, модели, объекты

1.1

Информация и данные. Свойства информации

1

1.2.

Информационный процесс

1

1.3.

Информационная модель объекта

1

1.4.

Представление об информационном объекте

1

1.5.

Представление информации в компьютере

4

1.6.

Моделирование в электронных таблицах

9

Контрольная работа № 1 «Представление информации в компьютере»

1

^ Часть 2. Программное обеспечение информационных технологий – 42 ч.

Раздел 2. Информационная технология работы с объектами текстового документа в среде Word -6 ч.

2.1.

Текстовые документы и текстовые процессоры

1

2.2.

Форматирование объектов текста

1

2.3.

Создание и редактирование графических объектов

1

2.4.

Создание и редактирование табличных объектов

1

2.5.

Информационная технология работы со структурой текстового документа

1

Контрольная работа № 2 «ИТ работы с объектами текстового документа в среде текстового процессора »

Раздел 3. Информационно-коммуникационные технологии работы в компьютерной сети -10 ч.

3.1.

Разновидности компьютерных сетей

1

3.2.

Представление о сервисах Интернета

1

3.3.

Информационная технология передачи информации через Интернет

1,5

3.4.

Этика сетевого общения

0,5

3.5.

Информационная технология поиска информации в Интернете

4

3.6.

Информационная безопасность сетевой технологии работы

1

Контрольная работа № 3 « ИКТ работы в компьютерной сети»

1

Раздел 4. Информационная технология представления информации в виде презентации в среде Power Рoint -8ч.

4.1.

Возможности программной среды подготовки презентаций

1

4.2.

Информационная технология 2 создания презентации с помощью Мастера автосодержания на тему «Техника безопасности в компьютерном классе»

3

4.3.

Информационная технология 2 создания презентации по социальной тематике «Компьютер и здоровье школьников»

Зачётная практическая работа № 1 «Разработка презентации по социальной тематике»


4

Раздел 5. Информационная технология обработки данных в среде табличного процессора Excel – 4 час

5.1.

Статистическая обработка массива данных и построение диаграмм

2

5.2.

Технология накопления и обработки данных

1

5.3.

Автоматизированная обработка данных с помощью анкет

1

Раздел 6. Информационная технология разработки проекта – 10 час

6.1.

Представление об основных этапах разработки проекта и информационных моделях проекта.

1

6.2.

Базовые информационные модели проекта.

1

6.3.

Разработка информационных моделей социального проекта « »

2

6.4.

Информационная технология создания социального проекта « »

6

Раздел 7. Основы программирования в среде Visual Basic – 10 час

7.1.

Основные понятия и инструментарий среды Visual Basic

1

7.2.

Технология работы с формой и графическими методами

2

7.3.

Оператор присваивания и ввод данных

2

7.4.

Управляющие элементы: метка, текстовое окно, кнопка

2

7.5.

Процедуры и функции

3

^ Зачётная практическая работа №2 «Создание приложения в среде Visual Basic»

В современном глобальном мире сетевая безопасность имеет решающее значение. Предприятиям необходимо обеспечивать безопасный доступ для сотрудников к сетевым ресурсам в любое время, для чего современная стратегия обеспечения сетевой безопасности должна учитывать ряд таких факторов, как увеличение надежности сети, эффективное управление безопасностью и защиту от постоянно эволюционирующих угроз и новых методов атак. Для многих компаний проблема обеспечения сетевой безопасности становится все более сложной, т.к. сегодняшние мобильные сотрудники, использующие личные смартфоны, ноутбуки и планшеты для работы, привносят новые потенциальные проблемы. При этом, хакеры тоже не сидят сложа руки и делают новые киберугрозы все более изощренными.

Недавний опрос ИТ-специалистов, управляющих сетевой безопасностью, [проведенный Slashdotmedia ] показал, что среди важных факторов при выборе сетевых решений безопасности почти половина опрошенных на первое место поставила надежность выбранного сетевого решения.

Заданный вопрос: Когда вы выбираете решение по сетевой безопасности, какие факторы наиболее важны для вашей компании?

Уязвимости, связанные с сетевой безопасностью, оставляют открытым целый ряд потенциальных проблем и подвергают компанию различным рискам. ИТ системы могут быть скомпрометированы через них, информация может быть украдена, работники и клиенты могут получить проблемы с доступом к ресурсам, которые они уполномочены использовать, что может заставить заказчиков перейти к конкуренту.

Простой сервиса, связанный с проблемами с безопасностью, можете иметь и другие финансовые последствия. Например, неработающий в час-пик веб-сайт может генерировать как прямые убытки, так и мощный отрицательный PR, что очевидно скажется на уровне продаж в будущем. Кроме того, в некоторых отраслях есть строгие критерии по доступности ресурсов, нарушение которых может привести к регуляторным штрафам и другим неприятным последствиям.

Помимо надежности решений, есть еще целый ряд вопросов, вышедших сегодня на первый план. Например, около 23% опрошенных ИТ-специалистов выделяют стоимость решения, как одну из основных проблем, связанных с сетевой безопасностью; что не удивительно, учитывая, что ИТ-бюджеты последних нескольких лет были существенно ограничены. Далее, около 20% опрошенных выделили простоту интеграции, как приоритетный параметр при выборе решения. Что естественно в условиях, когда от ИТ отдела требуют выполнять больше меньшими ресурсами.

Завершая разговор про ключевые параметры в выборе решения, хотелось бы отметить, что только примерно 9% респондентов назвали сетевые функции как ключевой фактор при выборе решений в области сетевой безопасности. При выборе решения по обеспечению сетевой безопасности корпоративных систем и минимизации связанных с этим рисков, одним из важнейших факторов для почти половины (около 48%) опрошенных, была надежность сети и связанного с ней решения.

Заданный вопрос: Какой тип сетевых атак больше всего беспокоит вашу ИТ организацию?

Сегодня хакеры используют разнообразные методы атаки на сети компаний. Исследование показало, что ИТ-специалисты наиболее обеспокоены двумя конкретными типами атак: атаки на отказ в обслуживании (DoS) и подслушивание (Eavesdropping) - эти атаки указаны как наиболее опасные и приоритетные примерно у 25% респондентов. И по 15% респондентов выбрали в качестве ключевых угроз атаки типа IP Spoofing и MITM (man-in-the-middle). Остальные типы угроз оказались приоритетны менее чем для 12% респондентов.

Заданный вопрос: В плане мобильных уязвимостей, что больше всего беспокоит вашу ИТ-команду?

Сегодня растёт число мобильных сотрудников и адаптация политики использования собственных электронных устройств для работы (BOYD) предъявляют новые требования к сетевой безопасности. При этом, к сожалению, очень быстро растет число небезопасных сетевых приложений. В 2013 году компания HP провела тестирование более 2000 приложений, в результате которого было обнаружено, что 90% приложений имеют уязвимости в системах защиты. Эта ситуация представляет серьезную угрозу корпоративной безопасности и не удивительно, что 54% респондентов оценили угрозы от вредоносных приложений как наиболее опасные.

Поводя промежуточный итог вышесказанному, можно сделать следующий вывод: современные решения по обеспечению сетевой безопасности в числе прочего обязательно должны обладать следующими свойствами:

  • уметь работать на седьмом уровне модели OSI (на уровне приложений);
  • уметь связывать конкретного пользователя с содержанием трафика;
  • иметь интегрированную в решение систему защиты от сетевых атак (IPS)
  • поддерживать встроенную защиту от атак типа DoS и прослушивания;
  • в целом обладать высокой степенью надежности.
Несколько слов о практике обеспечения Информационной безопасности в нашей стране; опишем кратко текущее правовое поле, определяющее в РФ аспекты ИБ. В Российской федерации все вопросы, связанные с ИБ, регулируются следующими основными законами:
  • ФЗ 149 «О информации, информационных технологиях и защите информации»;
  • ФЗ 152 «О защите персональных данных»;
  • ФЗ 139 (поправки в ФЗ 149, закон о связи и ФЗ 436 о защите от информации детей);
  • ФЗ 436 (о защите от информации детей);
  • ФЗ 187 (о защите интеллектуальной собственности и Интернете);
  • ФЗ 398 (о блокировке экстремистских сайтов);
  • ФЗ 97 (о блогерах, приравнявших их к СМИ);
  • ФЗ 242 (о размещении персональных данных на территории РФ).
При этом законы, регламентирующие деятельность в областях, связанных с ИБ, предполагают серьезную ответственность за нарушение тех или иных положений, например:
  • по статье 137 УК РФ (незаконное собирание или распространение сведений о частной жизни лица) - лишение свободы на срок до четырех лет;
  • по статье 140 УК РФ (неправомерный отказ в предоставлении собранных в установленном порядке документов и материалов) – штраф или лишение права занимать определенные должности или заниматься определенной деятельностью на срок от 2 до 5 лет;
  • по статье 272 УК РФ (неправомерный доступ к охраняемой законом компьютерной информации) - лишение свободы на срок до 5 лет.
Для большинства российских предприятий актуальность вопросов сетевой безопасности связана прежде всего с тем, что они так или иначе обрабатывают данные физических лиц (как минимум, данные своих работников). Следовательно, независимо от вида деятельности, любая компания должна учитывать требования законодательства РФ и обязана применять различные организационно-технические меры защиты информации. Конкретные меры по защите той или иной информации определяются в соответствующих российских стандартах ИБ (ГОСТ Р ИСО/МЭК 15408, ГОСТ Р ИСО 27001 и т.д.), а также руководящих документах Федеральной службы по техническому и экспортному контролю (например, приказ ФСТЭК №58 от 05.02.10, определяющий методы и способы защиты систем, обрабатывающих персональные данных).

Соблюдение предприятиями требований федерального законодательства контролируют сегодня три государственных органа: Федеральная служба безопасности (ФСБ), Роскомнадзор и ФСТЭК. Контроль осуществляется путем проведения плановых и внезапных проверок, по итогам которых компания может быть привлечена к ответственности.

Таким образом, игнорирование проблемы обеспечения сетевой безопасности в нашей стране может не только принести большие убытки бизнесу, но и повлечь за собой уголовную ответственность конкретных руководителей компании.

Заключение

Угрозы информационной безопасности становятся все сложнее, хакеры и киберпреступники используют новые приемы и реализуют все более изощренные атаки с целью взлома систем и кражи данных.

Борьба с новыми атаками требует решений по обеспечению сетевой безопасности и разработки сетевой стратегии безопасности, отвечающей требованиям надежности, стоимости и вопросам интеграции с другими ИТ системами. Выработанные решения должны быть надежными, обеспечивать защиту от атак на уровне приложений и позволять идентифицировать трафик.

Из всего вышесказанного напрашивается простой вывод – в современном мире нельзя игнорировать вопросы информационной безопасности; в ответ на новые угрозы нужно искать новых подходы к реализации стратегии защиты информации и использовать новые методы и средства обеспечения сетевой безопасности.

Наши предыдущие публикации:
»

Общие сведения о безопасности в компьютерных сетях

Основной особенностью любой сетевой системы является то, что ее компоненты распределены в пространстве, и связь между ними физически осуществляется при помощи сетевых соединений (коаксиальный кабель, витая пара, оптоволокно) и программно при помощи механизма сообщений. При этом все управляющие сообщения и данные, пересылаемые между объектами распределенной вычислительной системы, передаются по сетевым соединениям в виде пакетов обмена.

Сетевые системы характерны тем, что наряду с локальными угрозами, осуществляемыми в пределах одной компьютерной системы, к ним применим специфический вид угроз, обусловленный распределенностью ресурсов и информации в пространстве. Это так называемые сетевые, или удаленные угрозы. Они характерны, во-первых, тем, что злоумышленник может находиться за тысячи километров от атакуемого объекта, и, во-вторых, тем, что нападению может подвергаться не конкретный компьютер, а информация, передающаяся по сетевым соединениям. С развитием локальных и глобальных сетей именно удаленные атаки становятся лидирующими как по числу попыток, так и по успешности их применения и, соответственно, обеспечение безопасности вычислительных сетей с позиции противостояния удаленным атакам приобретает первостепенное значение. Специфика распределенных вычислительных систем состоит в том, что если в локальных вычислительных сетях наиболее частыми являются угрозы раскрытия и целостности, то в сетевых системах на первое место выходит угроза отказа в обслуживании.

Удаленная угроза - потенциально возможное информационное разрушающее воздействие на распределенную вычислительную сеть, осуществляемая программно по каналам связи. Это определение охватывает обе особенности сетевых систем - распределенность компьютеров и распределенность информации. Поэтому при рассмотрении вопросов И Б вычислительных сетей рассматриваются два подвида удаленных угроз - это удаленные угрозы на инфраструктуру и протоколы сети и удаленные угрозы на телекоммуникационные службы. Первые используют уязвимости в сетевых протоколах и инфраструктуре сети, а вторые - уязвимости в телекоммуникационных службах.

Цели сетевой безопасности могут меняться в зависимости от ситуации, но обычно связаны с обеспечением следующих составляющих ИБ:

  • целостность данных;
  • конфиденциальность данных;
  • доступность данных.

Целостность данных - одна из основных целей И Б сетей - предполагает, что данные не были изменены, подменены или уничтожены в процессе их передачи по линиям связи, между узлами вычислительной сети. Целостность данных должна гарантировать их сохранность как в случае злонамеренных действий, так и случайностей. Обеспечение целостности данных является обычно одной из самых сложных задач сетевой безопасности.

Конфиденциальность данных - вторая главная цель сетевой безопасности. При информационном обмене в вычислительных сетях большое количество информации относится к конфиденциальной, например, личная информация пользователей, учетные записи (имена и пароли), данные о кредитных картах и др.

Доступность данных - третья цель безопасности данных в вычислительных сетях. Функциями вычислительных сетей являются совместный доступ к аппаратным и программным средствам сети и совместный доступ к данным. Нарушение И Б как раз и связано с невозможностью реализации этих функций.

В локальной сети должны быть доступны принтеры, серверы, рабочие станции, данные пользователей и др.

В глобальных вычислительных сетях должны быть доступны информационные ресурсы и различные сервисы, например почтовый сервер, сервер доменных имен, veb-cepBep и др.

При рассмотрении вопросов, связанных с ИБ, в современных вычислительных сетях необходимо учитывать следующие факторы:

  • глобальная связанность;
  • разнородность корпоративных информационных систем;
  • распространение технологии «клиент/сервер».

Применительно к системам связи глобальная связанность означает,

что речь идет о защите сетей, пользующихся внешними сервисами, основанными на протоколах TCP/IP и предоставляющих аналогичные сервисы вовне. Весьма вероятно, что внешние сервисы находятся в других странах, поэтому от средств защиты в данном случае требуется следование стандартам, признанным на международном уровне. Национальные границы, законы, стандарты не должны препятствовать защите потоков данных между клиентами и серверами.

Из факта глобальной связанности вытекает также меньшая эффективность мер физической защиты, общее усложнение проблем, связанных с защитой от несанкционированного доступа, необходимость привлечения для их решения новых программно-технических средств, например, межсетевых экранов.

Разнородность аппаратных и программных платформ требует от изготовителей средств защиты соблюдения определенной технологической дисциплины. Важны не только чисто защитные характеристики, но и возможность встраивания этих систем в современные корпоративные информационные структуры. Если, например, продукт, предназначенный для криптографической защиты, способен функционировать исключительно на платформе Wintel (Windows+Intel), то его практическая применимость вызывает серьезные сомнения.

Корпоративные ИС оказываются разнородными еще в одном важном отношении - в разных частях этих систем хранятся и обрабатываются данные разной степени важности и секретности.

Использования технологии «клиент/сервер» с позиции И Б имеет следующие особенности:

  • каждый сервис имеет свою трактовку главных аспектов И Б (доступности, целостности, конфиденциальности);
  • каждый сервис имеет свою трактовку понятий субъекта и объекта;
  • каждый сервис имеет специфические угрозы;
  • каждый сервис нужно по-своему администрировать;
  • средства безопасности в каждый сервис нужно встраивать по-особому.

Особенности вычислительных сетей, и в первую очередь глобальных, предопределяют необходимость использования специфических методов и средств защиты, например:

  • - защита подключений к внешним сетям;
  • - защита корпоративных потоков данных, передаваемых по открытым сетям;
  • - защита потоков данных между клиентами и серверами;
  • - обеспечение безопасности распределенной программной среды;
  • - защита важнейших сервисов (в первую очередь - web-сервиса);
  • - аутентификация в открытых сетях.

Вопросы реализации таких методов защиты будут рассмотрены далее.

В последнее время все четче просматривается незащищенность вычислительных сетей от глобальных атак. Успешные глобальные сетевые атаки, безусловно, являются самым разрушительным явлением, которое может произойти в современных сетях.

Тема: Проблемы защиты информации в

компьютерных сетях.

Введение.

1. Проблемы защиты информации в компьютерных системах.

2. Обеспечение защиты информации в сетях.

3. Механизмы обеспечения безопасности:

3.1. Криптография.

3.2. Электронная подпись.

3.3. Аутентификация.

3.4. Защита сетей.

4. Требования к современным средствам защиты информации.

Заключение.

Литература.


Введение.

В вычислительной технике понятие безопасности является весьма широким. Оно подразумевает и надёжность работы компьютера, и сохранность ценных данных, и защиту информации от внесения в неё изменений неуполномоченными лицами, и сохранение тайны переписки в электронной связи. Разумеется, во всех цивилизованных странах на страже безопасности граждан стоят законы, но в сфере вычислительной техники правоприменительная практика пока развита недостаточно, а законотворческий процесс не успевает за развитием компьютерных систем, во многом опирается на меры самозащиты.

Всегда существует проблема выбора между необходимым уровнем защиты и эффективностью работы в сети. В некоторых случаях пользователями или потребителями меры по обеспечению безопасности могут быть расценены как меры по ограничению доступа и эффективности. Однако такие средства, как, например, криптография, позволяют значительно усилить степень защиты, не ограничивая доступ пользователей к данным.

1. Проблемы защиты информации в компьютерных системах.

Широкое применение компьютерных технологий в автоматизированных системах обработки информации и управления привело к обострению проблемы защиты информации, циркулирующей в компьютерных системах, от несанкционированного доступа. Защита информации в компьютерных системах обладает рядом специфических особенностей, связанных с тем, что информация не является жёстко связанной с носителем, может легко и быстро копироваться и передаваться по каналам связи. Известно очень большое число угроз информации, которые могут быть реализованы как со стороны внешних нарушителей, так и со стороны внутренних нарушителей.

Радикальное решение проблем защиты электронной информации может быть получено только на базе использования криптографических методов, которые позволяют решать важнейшие проблемы защищённой автоматизированной обработки и передачи данных. При этом современные скоростные методы криптографического преобразования позволяют сохранить исходную производительность автоматизированных систем. Криптографические преобразования данных являются наиболее эффективным средством обеспечения конфиденциальности данных, их целостности и подлинности. Только их использование в совокупности с необходимыми техническими и организационными мероприятиями могут обеспечить защиту от широкого спектра потенциальных угроз.

Проблемы, возникающие с безопасностью передачи информации при работе в компьютерных сетях, можно разделить на три основных типа:

· перехват информации – целостность информации сохраняется, но её конфиденциальность нарушена;

· модификация информации – исходное сообщение изменяется либо полностью подменяется другим и отсылается адресату;

· подмена авторства информации. Данная проблема может иметь серьёзные последствия. Например, кто-то может послать письмо от вашего имени (этот вид обмана принято называть спуфингом) или Web – сервер может притворяться электронным магазином, принимать заказы, номера кредитных карт, но не высылать никаких товаров.

Потребности современной практической информатики привели к возникновению нетрадиционных задач защиты электронной информации, одной из которых является аутентификация электронной информации в условиях, когда обменивающиеся информацией стороны не доверяют друг другу. Эта проблема связана с созданием систем электронной цифровой подписи. Теоретической базой для решения этой проблемы явилось открытие двухключевой криптографии американскими исследователями Диффи и Хемиманом в середине 1970-х годов, которое явилось блестящим достижением многовекового эволюционного развития криптографии. Революционные идеи двухключевой криптографии привели к резкому росту числа открытых исследований в области криптографии и показали новые пути развития криптографии, новые её возможности и уникальное значение её методов в современных условиях массового применения электронных информационных технологий.

Технической основой перехода в информационное общество являются современные микроэлектронные технологии, которые обеспечивают непрерывный рост качества средств вычислительной техники и служат базой для сохранения основных тенденций её развития – миниатюризации, снижения электропотребления, увеличения объёма оперативной памяти (ОП) и ёмкости встроенных и съёмных накопителей, роста производительности и надёжности, расширение сфер и масштабов применения. Данные тенденции развития средств вычислительной техники привели к тому, что на современном этапе защита компьютерных систем от несанкционированного доступа характеризуется возрастанием роли программных и криптографических механизмов защиты по сравнению с аппаратными.

Возрастание роли программных и криптографических средств зашит проявляется в том, что возникающие новые проблемы в области защиты вычислительных систем от несанкционированного доступа, требуют использования механизмов и протоколов со сравнительно высокой вычислительной сложностью и могут быть эффективно решены путём использования ресурсов ЭВМ.

Одной из важных социально-этических проблем, порождённых всё более расширяющимся применением методов криптографической защиты информации, является противоречие между желанием пользователей защитить свою информацию и передачу сообщений и желанием специальных государственных служб иметь возможность доступа к информации некоторых других организаций и отдельных лиц с целью пресечения незаконной деятельности. В развитых странах наблюдается широкий спектр мнений о подходах к вопросу о регламентации использования алгоритмов шифрования. Высказываются предложения от полного запрета широкого применения криптографических методов до полной свободы их использования. Некоторые предложения относятся к разрешению использования только ослабленных алгоритмов или к установлению порядка обязательной регистрации ключей шифрования. Чрезвычайно трудно найти оптимальное решение этой проблемы. Как оценить соотношение потерь законопослушных граждан и организаций от незаконного использования их информации и убытков государства от невозможности получения доступа к зашифрованной информации отдельных групп, скрывающих свою незаконную деятельность? Как можно гарантированно не допустить незаконное использование криптоалгоритмов лицами, которые нарушают и другие законы? Кроме того, всегда существуют способы скрытого хранения и передачи информации. Эти вопросы ещё предстоит решать социологам, психологам, юристам и политикам.

Возникновение глобальных информационных сетей типа INTERNET является важным достижением компьютерных технологий, однако, с INTERNET связана масса компьютерных преступлений.

Результатом опыта применения сети INTERNET является выявленная слабость традиционных механизмов защиты информации и отставания в применении современных методов. Криптография предоставляет возможность обеспечить безопасность информации в INTERNET и сейчас активно ведутся работы по внедрению необходимых криптографических механизмов в эту сеть. Не отказ от прогресса в информатизации, а использование современных достижений криптографии – вот стратегически правильное решение. Возможность широкого использования глобальных информационных сетей и криптографии является достижением и признаком демократического общества.

Владение основами криптографии в информационном обществе объективно не может быть привилегией отдельных государственных служб, а является насущной необходимостью для самих широких слоёв научно-технических работников, применяющих компьютерную обработку данных или разрабатывающих информационные системы, сотрудников служб безопасности и руководящего состава организаций и предприятий. Только это может служить базой для эффективного внедрения и эксплуатации средств информационной безопасности.

Одна отдельно взятая организация не может обеспечить достаточно полный и эффективный контроль за информационными потоками в пределах всего государства и обеспечить надлежащую защиту национального информационного ресурса. Однако, отдельные государственные органы могут создать условия для формирования рынка качественных средств защиты, подготовки достаточного количества специалистов и овладения основами криптографии и защиты информации со стороны массовых пользователей.

В России и других странах СНГ в начале 1990-х годов отчётливо прослеживалась тенденция опережения расширения масштабов и областей применения информационных технологий над развитием систем защиты данных. Такая ситуация в определённой степени являлась и является типичной и для развитых капиталистических стран. Это закономерно: сначала должна возникнуть практическая проблема, а затем будут найдены решения. Начало перестройки в ситуации сильного отставания стран СНГ в области информатизации в конце 1980-х годов создало благодатную почву для резкого преодоления сложившегося разрыва.

Пример развитых стран, возможность приобретения системного программного обеспечения и компьютерной техники вдохновили отечественных пользователей. Включение массового потребителя, заинтересованного в оперативной обработке данных и других достоинствах современных информационно-вычислительных систем, в решении проблемы компьютеризации привело к очень высоким темпам развития этой области в России и других странах СНГ. Однако, естественное совместное развитие средств автоматизации обработки информации и средств защиты информации в значительной степени нарушилось, что стало причиной массовых компьютерных преступлений. Ни для кого не секрет, что компьютерные преступления в настоящее время составляют одну из очень актуальных проблем.

Мы с вами живем в информационную эпоху, которую невозможно представить себе без компьютеров, принтеров, мобильных телефонов и прочих высокотехнологичных «игрушек». Однако игрушки игрушками, а информация, хранимая, обрабатываемая и передаваемая с их помощью, отнюдь не относится к разряду несерьезной. А раз так, то и защита для нее нужна соответствующая, хотя до сих пор многие производители снабжают свои хайтек-продукты такой защитой, которую научились обходить даже школьники начальных классов. О развитии технологий информационной безопасности мы и поговорим в этой статье.

Что влияет на технологии информационной безопасности

есмотря на видимую сложность защитных технологий, ничего сверхъестественного в них нет - по уровню развития они не опережают информационных технологий, а всего лишь следует за ними. Можно ли представить себе межсетевой экран в системе, состоящей из не связанных между собой компьютеров? А зачем нужен антивирус в условиях полного отсутствия вредоносных программ? Любая более или менее серьезная защитная технология появляется только в ответ на какую-либо технологическую новинку. Более того, ни одна технологическая новинка не требует обязательной разработки адекватной защиты, поскольку подобные работы ведутся только в случае их финансовой целесообразности. Например, разработка защитных механизмов для клиент-серверной СУБД необходима, так как это непосредственно влияет на количество пользователей данной системы. А вот защитные функции в мобильном телефоне пока не востребованы, ибо объемы продаж никак не зависят от защищенности телефонов.

Кроме того, на развитие защитных технологий влияет и деятельность хакеров. И это понятно, поскольку даже для самой востребованной технологии не будут разрабатываться защитные меры, пока эта технология не подвергнется атакам со стороны хакеров. Ярким примером этого является технология беспроводных сетей (Wireless LAN), которая еще недавно не обладала хоть сколько-нибудь серьезной защитой. А как только действия злоумышленников продемонстрировали всю уязвимость беспроводных сетей, то сразу стали появляться специализированные средства и механизмы защиты - и сканеры уязвимостей (например, Wireless Scanner), и системы обнаружения атак (например, AirDefense или Isomar IDS), и прочие средства.

В маркетинге часто используется термин «коммуникационное поле», который означает круг общения отдельного человека или целевой группы людей. В нашей статье речь пойдет о коммуникационном поле компании, то есть о ее взаимодействии с Интернетом, с удаленными филиалами (intranet) и с клиентами и партнерами (extranet).

В зависимости от вида общения применяются различные защитные технологии. Например, при выходе в Интернет никогда не используется технология VPN (Virtual Provate Network - виртуальная частная сеть. - Прим. ред. ), но она находит широкое применение при взаимодействии с удаленными филиалами.

На выбор технологий информационной безопасности важное влияние оказывает и размер того объединения компьютеров, которое ныне принято называть сетью. Масштаб сети диктует свои правила - как по причине нехватки денег на приобретение нужных средств защиты информации, так и из-за отсутствия необходимости в последних. Так, для одного компьютера, подключенного к Интернету, не нужны системы контроля утечки конфиденциальной информации, а для сети среднего масштаба подобные системы жизненно необходимы. К тому же в небольших сетях не столь остро стоит проблема централизованного управления средствами информационной безопасности, а в сетях крупных предприятий без таких средств вообще не обойтись. Поэтому в больших сетях находят свое применение системы корреляции, PKI (Public-Key Infrastructure - инфраструктура открытых ключей. - Прим. ред.) и т.п. Даже традиционные средства защиты меняются под влиянием масштаба сети и дополняются новыми функциями - интеграцией с системами сетевого управления, эффективной визуализацией событий, расширенной генерацией отчетов, иерархическим и ролевым управлением и пр.

Итак, выбор защитных технологий зависит от четырех вышеназванных факторов - от известности и распространенности защищаемой технологии, от вида хакерских атак, от коммуникационного поля и от масштаба сети. Изменение любого из этих факторов ведет к изменению и самих технологий защиты, и способов их использования. А теперь, учитывая все вышесказанное, посмотрим, какие защитные технологии наиболее распространены в современном цифровом мире.

Антивирусы

дной из первых технологий, до сих пор востребованной рынком (как корпоративными, так и домашними пользователями), является антивирусная защита, появившаяся еще в середине 80-х годов. Именно тогда, после первых робких попыток вирусописателей, стали появляться первые вирусные сканеры, фаги и мониторы. Но если на заре активного развития вычислительных сетей широкое распространение получили антивирусы, обнаруживавшие и лечившие традиционные файловые и бутовые вирусы, которые распространялись через дискеты и BBS, то сейчас таких вирусов практически не существует. Сегодня в вирусных хит-парадах лидируют иные классы вредоносных программ - троянцы и черви, распространяющиеся не от файла к файлу, а от компьютера к компьютеру. Вирусные вспышки превратились в настоящие эпидемии и пандемии, а ущерб от них измеряется десятками миллиардов долларов.

Первые антивирусы защищали только отдельно стоящие компьютеры. Ни о какой защите сети, а тем более о централизованном управлении и речи быть не могло, что, разумеется, затрудняло использование этих решений на корпоративном рынке. К сожалению, сегодня положение дел в этом вопросе тоже далеко от идеального, так как современные антивирусные компании уделяют этому аспекту отнюдь не первостепенное внимание, концентрируясь преимущественно на пополнении базы сигнатур вирусов. Исключением являются лишь некоторые зарубежные фирмы (TrendMicro, Symantec, Sophos и т.д.), заботящиеся и о корпоративном пользователе. Российские же производители, не уступающие своим иностранным коллегам по качеству и количеству обнаруживаемых вирусов, пока проигрывают им по части централизованного управления.

Межсетевые экраны

Конце 80-х — начале 90-х годов вследствие повсеместного развития компьютерных сетей возникла задача их защиты, которая была решена с помощью межсетевых экранов, устанавливаемых между защищаемой и незащищенной сетями. Ведущие начало от обычных пакетных фильтров, эти решения превратились в многофункциональные комплексы, решающие множество задач — от межсетевого экранирования и балансировки нагрузки до контроля пропускной способности и управления динамическими адресами. В МСЭ может быть встроен и модуль построения VPN, обеспечивающий защиту передаваемого между участками сети трафика.

Развитие межсетевых экранов шло совершенно иначе, чем развитие антивирусов. Если последние развивались от персональной защиты к защите целых сетей, то первые - с точностью до наоборот. Долгое время никто и думать не мог, что МСЭ способна защищать что-то еще, кроме корпоративного периметра (поэтому он и назывался межсетевым), но с увеличением количества персональных компьютеров, подключенных к Всемирной сети, стала актуальной задача защиты отдельно стоящих узлов, что и породило технологию персональных МСЭ, активно развиваемую в настоящее время. Некоторые производители пошли еще дальше, предложив потребителю межсетевые экраны приложений, защищающие не сети и даже не отдельные компьютеры, а программы, запущенные на них (например, ПО Web-сервера). Яркими представителями этого класса защитных средств являются Check Point Firewall-1 NG with Application Intelligence и Cisco PIX Firewall (корпоративные МСЭ), RealSecure Desktop Protector и Check Point SecureClient (персональные МСЭ), Sanctum AppShield (МСЭ уровня приложений). Среди российских разработок можно назвать решения «Элвис+» («Застава»), «Инфосистемы Джет» (Z-2 и «Ангара»), «Информзащита» («Континент-К»).

Авторизация и разграничение доступа

ащита периметра — дело важное, но и о внутренней безопасности тоже думать надо, тем более что по статистике от 51 до 83% всех компьютерных инцидентов в компаниях происходит по вине их собственных сотрудников, где никакие межсетевые экраны не помогут. Поэтому возникает необходимость в системах авторизации и разграничения доступа, определяющих, кому, к какому ресурсу и в какое время можно получить доступ. Эти системы базируются на классических моделях разграничения доступа (Белла — Ла-Падуллы, Кларка — Вилсона и т.п.), разработанных в 70-80-х годах прошлого столетия и первоначально использовавшихся в Министерстве обороны США, в недрах и по заказу которого и был создан Интернет.

Одним из направлений защитных технологий данного класса является аутентификация, которая позволяет сопоставить вводимые пользователем пароль и имя с информацией, хранящейся в базе системы защиты. При совпадении вводимых и эталонных данных разрешается доступ к соответствующим ресурсам. Надо отметить, что, кроме пароля, аутентификационной информацией могут служить и другие уникальные элементы, которыми обладает пользователь. Все эти элементы могут быть разделены на категории, соответствующие трем принципам: «я знаю что-то» (классические парольные схемы), «я имею что-то» (в качестве уникального элемента может выступать таблетка Touch Memory, смарт-карта, брелок eToken, бесконтактная proximity-карта или карточка одноразовых паролей SecurID) и «я обладаю чем-то» (уникальным элементом служит отпечаток пальца, геометрия руки, почерк, голос или сетчатка глаза).

Системы обнаружения и предотвращения атак

аже несмотря на наличие на периметре корпоративной сети межсетевых экранов и антивирусов, некоторые атаки все равно проникают сквозь защитные преграды. Такие атаки получили название гибридных, и к ним можно отнести все последние нашумевшие эпидемии - Code Red, Nimda, SQL Slammer, Blaster, MyDoom и др. Для защиты от них предназначена технология обнаружения атак. Однако история этой технологии началась гораздо раньше - в 1980 году, когда Джеймс Андерсон предложил использовать для обнаружения несанкционированных действий журналы регистрации событий. Еще десять лет понадобилось, чтобы перейти от анализа журналов регистрации к анализу сетевого трафика, где велись поиски признаков атак.

Со временем ситуация несколько изменилась - нужно было не только обнаруживать атаки, но и блокировать их до того момента, как они достигнут своей цели. Таким образом, системы обнаружения атак сделали закономерный шаг вперед (а может быть, и в сторону, поскольку и классические системы по-прежнему активно используются в сетях, а во внутренней сети альтернативы им пока не придумано) и, объединив в себе знакомые по межсетевым экранам технологии, стали пропускать весь сетевой трафик (для защиты сегмента сети) или системные вызовы (для защиты отдельного узла), что позволило достичь 100% блокирования обнаруженных атак.

Дальше история повторилась: появились персональные системы, защищающие рабочие станции и мобильные компьютеры, а потом произошло закономерное слияние персональных межсетевых экранов, систем обнаружения атак и антивирусов, и это стало почти идеальным решением для защиты компьютера.

Сканеры безопасности

сем известно, что пожар легче предупредить, чем потушить. Аналогичная ситуация и в информационной безопасности: чем бороться с атаками, гораздо лучше устранить дыры, используемые атаками. Иными словами, надо обнаружить все уязвимости и устранить их до того, как их обнаружат злоумышленники. Этой цели служат сканеры безопасности (их также называют системами анализа защищенности), работающие как на уровне сети, так и на уровне отдельного узла. Первым сканером, ищущим дыры в операционной системе UNIX, стал COPS, разработанный Юджином Спаффордом в 1991 году, а первым сетевым сканером - Internet Scanner, созданный Кристофером Клаусом в 1993-м.

В настоящее время происходит постепенная интеграция систем обнаружения атак и сканеров безопасности, что позволяет практически полностью исключить из процесса обнаружения и блокирования атак человека, сосредоточив его внимание на более важной деятельности. Интеграция заключается в следующем: сканер, обнаруживший дыру, дает команду сенсору обнаружения атак на отслеживание соответствующей атаки, и наоборот: сенсор, обнаруживший атаку, дает команду на сканирование атакуемого узла.

Лидерами рынка систем обнаружения атак и сканеров безопасности являются компании Internet Security Systems, Cisco Systems и Symantec. Среди российских разработчиков тоже есть свои герои, решившие бросить вызов своим более именитым зарубежным коллегам. Такой компанией является, например, Positive Technologies, выпустившая первый российский сканер безопасности - XSpider.

Системы контроля содержимого и антиспама

ИИтак, от вирусов, червей, троянских коней и атак мы нашли средства защиты. А что делать со спамом, утечкой конфиденциальной информации, загрузкой нелицензионного ПО, бесцельными прогулками сотрудников по Интернету, чтением анекдотов, онлайн-играми? Все вышеописанные технологии защиты могут помочь в решении этих проблем лишь частично. Впрочем, это и не их задача. На первый план здесь выходят другие решения - средства мониторинга электронной почты и Web-трафика, контролирующие всю входящую и исходящую электронную корреспонденцию, а также разрешающие доступ к различным сайтам и загрузку с них (и на них) файлов (в том числе видео- и аудиофайлов).

Это активно развивающееся направление в области информационной безопасности представлено множеством широко (и не очень) известных производителей - SurfControl, Clearswift, Cobion, TrendMicro, «Инфосистемы Джет», «Ашманов и партнеры» и др.

Другие технологии

Корпоративных сетях нашли применение и некоторые другие защитные технологии - хотя и очень перспективные, но пока что мало распространенные. К таким технологиям можно отнести PKI, системы корреляции событий безопасности и системы единого управления разнородными средствами защиты. Данные технологии востребованы только в случаях эффективного применения и межсетевых экранов, и антивирусов, и систем разграничения доступа и т.д., а это в нашей стране пока еще редкость. Лишь единицы из тысяч российских компаний доросли до использования технологий корреляции, PKI и т.п., но ведь мы находимся только в начале пути...



Похожие публикации