Телевизоры. Приставки. Проекторы и аксессуары. Технологии. Цифровое ТВ

Виды электронных носителей информации в компьютере. Информационные носители: виды и примеры. по способам построения

Введение…………………………………………………………………………...3

Носители информации……………………………………………………………4

Кодирование и считывание информации..………………………………………9

Перспективы развития…………………….…………………………………….15

Заключение……………………………………………………………………….18

Литература.………………………………………………………………………19

Введение

В 1945 г. Джон фон Нейман (1903-1957), американский ученый, выдвинул идею использования внешних запоминающих устройств для хранения программ и данных. Нейман разработал структурную принципиальную схему компьютера. Схеме Неймана соответствуют и все современные компьютеры.

Внешняя память предназначена для долговременного хранения программ и данных. Устройства внешней памяти (накопители) являются энергонезависимыми, выключение питания не приводит к потере данных. Они могут быть встроены в системный блок или выполнены в виде самостоятельных блоков, связанных с системным через его порты. По способу записи и чтения накопители делятся, в зависимости от вида носителя, на магнитные, оптические и магнитооптические.

Кодирование информации – это процесс формирования определенного представления информации. Компьютер может обрабатывать только информацию, представленную в числовой форме. Вся другая информация (например, звуки, изображения, показания приборов и т. д.) для обработки на компьютере должна быть преобразована в числовую форму. Как правило, все числа в компьютере представляются с помощью нулей и единиц (а не десяти цифр, как это привычно для людей). Иными словами, компьютеры обычно работают в двоичной системе счисления, поскольку при этом устройства для их обработки получаются значительно более простыми.

Считывание информации – извлечение информации, хранящейся в запоминающем устройстве (ЗУ), и передача её в др. устройства вычислительной машины. Считывание информации производится при выполнении большинства машинных операций, а иногда является самостоятельной операцией.

В ходе реферата рассмотрим основные типы носителей информации, кодирования и считывания информации, а также перспективы развития.

Носители информации

Исторически первыми носителями информации были перфоленточные и перфокарточные устройства ввода-вывода. Вслед за ними пришли внешние записывающие устройства в виде магнитных лент, сменных и постоянных магнитных дисков и магнитных барабанов.

Магнитные ленты хранят и используют намотанными на катушки. Выделялись катушки двух видов: подающие и принимающие. Ленты поставляются пользователям на подающих катушках и не требуют дополнительной перемотки при установке их в накопители. Лента на катушку наматывается рабочим слоем внутрь. Магнитные ленты относятся к накопителям непрямого доступа. Это значит, что время поиска любой записи зависит от ее местоположения на носителе, так как физическая запись не имеет своего адреса и чтобы её просмотреть необходимо просмотреть предыдущие. К запоминающим устройствам прямого доступа относятся магнитные диски и магнитные барабаны. Основная особенность их заключается в том, что время поиска любой записи не зависит от ее местоположения на носителе. Каждая физическая запись на носителе имеет адрес, по которому обеспечивается непосредственный доступ к ней, минуя остальные записи. Следующим видом записывающих устройств стали пакеты сменных магнитных дисков, состоящие из шести алюминиевых дисков. Ёмкость всего пакета составляла 7,25 Мбайт.

Рассмотрим более подробно современные носители информации.

1. Накопитель на гибких магнитных дисках (НГМД – дисковод).

Это устройство использует в качестве носителя информации гибкие магнитные диски – дискеты, которые могут быть 5-ти или 3-х дюймовыми. Дискета – это магнитный диск вроде пластинки, помещенный в «конверт». В зависимости от размера дискеты изменяется ее емкость в байтах. Если на стандартную дискету размером 5’25 дюйма помещается до 720 Кбайт информации, то на дискету 3’5 дюйма уже 1,44 Мбайта. Дискеты универсальны, подходят на любой компьютер того же класса оснащенный дисководом, могут служить для хранения, накопления, распространения и обработки информации. Дисковод – устройство параллельного доступа, поэтому все файлы одинаково легко доступны. Диск покрывается сверху специальным магнитным слоем, который обеспечивает хранение данных. Информация записывается с двух сторон диска по дорожкам, которые представляют собой концентрические окружности. Каждая дорожка разделяется на секторы. Плотность записи данных зависит от плотности нанесения дорожек на поверхность, т. е. числа дорожек на поверхности диска, а также от плотности записи информации вдоль дорожки. К недостаткам относятся маленькая емкость, что делает практически невозможным долгосрочное хранение больших объемов информации, и не очень высокая надежность самих дискет. В настоящее време дискеты практически не используются.

2. Накопитель на жестком магнитном диске (НЖМД – винчестер)

Является логическим продолжением развития технологии магнитного хранения информации. Основные достоинства:

– большая емкость;

– простота и надежность использования;

– возможность обращаться к множеству файлов одновременно;

– высокая скорость доступа к данным.

Из недостатков можно выделить лишь отсутствие съемных носителей информации, хотя в настоящее время используются внешние винчестеры и системы резервного копирования.

В компьютере предусмотрена возможность с помощью специальной системной программы условно разбивать один диск на несколько. Такие диски, которые не существуют как отдельное физическое устройство, а представляют лишь часть одного физического диска, называются логическими дисками. Логическим дискам присваиваются имена, в качестве которых используются буквы латинского алфавита [С:], , [Е:], и т. д.

3. Устройство чтения компакт-дисков (CD-ROM)

В этих устройствах используется принцип считывания сфокусированным лазерным лучом бороздок на металлизированном несущем слое компакт-диска. Этот принцип позволяет достичь высокой плотности записи информации, а, следовательно, и большой емкости при минимальных размерах. Компакт-диск является отличным средством хранения информации, он дешевый, практически не подвержен каким-либо влияниям среды, информация, записанная на нем не исказится и не сотрется, пока диск не будет уничтожен физически, его ёмкость 650 Мбайт. Имеет только один недостаток – сравнительно небольшой объём хранения информации.

4. DVD

А) Отличия DVD от обычных CD-ROM

Самое основное отличие – это, естественно, объем записываемой информации. Если на обычный CD-диск можно записать 650 Мб (хотя в последнее время встречаются болванки и на 800 Мб, но далеко не все приводы смогут прочитать то, что записано на таком носителе), то на один DVD-диск влезет от 4,7 до 17 Гб. В DVD используется лазер с меньшей длиной волны, что позволило существенно увеличить плотность записи, а кроме того, DVD подразумевает возможность двухслойной записи информации, то есть на поверхности компакта находится один слой, поверх которого наносится еще один, полупрозрачный, и первый считывается сквозь второй параллельно. В самих носителях тоже отличий больше, чем кажется на первый взгляд. Из-за того, что плотность записи существенно возросла, а длина волны стала меньше, изменились и требования к защитному слою – для DVD он составляет 0,6 мм против 1,2 мм у обычных CD. Естественно, что диск такой толщины будет значительно более хрупким, по сравнению с классической болванкой. Поэтому еще 0,6 мм обычно заливаются пластиком с двух сторон, чтобы получились те же 1,2 мм. Но самый главный бонус такого защитного слоя в том, что благодаря его малому размеру на одном компакте стало возможным записывать информацию с двух сторон, то есть удваивать его емкость, при этом оставляя размеры практически прежними.

Б) Емкость DVD

Существует пять разновидностей DVD-дисков:

1. DVD5 – однослойный односторонний диск, 4,7 Гб, или два часа видео;

2. DVD9 – двухслойный односторонний диск, 8,5 Гб, или четыре часа видео;

3. DVD10 – однослойный двухсторонний диск, 9,4 Гб, или 4,5 часа видео;

4. DVD14 – двухсторонний диск, два слоя на одной и один на другой стороне, 13,24 Гб, или 6,5 часов видео;

5. DVD18 – двухслойный двухсторонний диск, 17 Гб, или более восьми часов видео.

Самые популярные стандарты – DVD5 и DVD9.

В) Возможности

Ситуация с DVD-носителями сейчас напоминает аналогичную с CD, на которых долгое время тоже хранили только музыку. Сейчас можно встретить не только фильмы, но и музыку (так называемые DVD-Audio) и сборники софта, и игры, и фильмы. Естественно, что основной областью использования является кинопродукция.

Г) Звук в DVD

Звуковое сопровождение может быть закодировано во многих форматах. Самые известные и часто используемые – Dolby Prologic, DTS и Dolby Digital всех версий. То есть фактически в форматах, используемых в кинотеатрах для получения максимально точной и красочной звуковой картины.

Д) Механические повреждения

К механическим повреждениям диски CD и DVD одинаково чувствительны. То есть царапина есть царапина. Однако из-за гораздо более высокой плотности записи потери на DVD-диске будут более значительными. Сейчас существуют программы, которые могут восстанавливать информацию даже с поврежденных дисков, правда с пропуском повреждённых секторов.

Быстрорастущий рынок портативных жестких дисков, предназначенных для транспортировки больших объемов данных, привлек к себе внимание одного из самых крупных производителей винчестеров. Компания Western Digital объявила о выпуске сразу двух моделей устройств под названием WD Passport Portable Drive. В продажу поступили варианты емкостью 40 и 80 Гб. Портативные устройства WD Passport Portable Drive основаны на 2,5-дюймовых HDD WD Scorpio EIDE. Они упакованы в прочный корпус, оборудованы поддержкой технологии Data Lifeguard, и не нуждаются в дополнительном источнике питания (питание через USB). Производитель отмечает, что накопители не греются, работают тихо и потребляют мало энергии.

6. USB Flash Drive

Новый тип внешнего носителя информации для компьютера, появившийся благодаря широкому распространению интерфейса USB(универсальной шины) и преимуществам микросхем Flash памяти. Достаточно большая емкость при небольших размерах, энергонезависимость, высокая скорость передачи информации, защищённость от механических и электромагнитных воздействий, возможность использования на любом компьютере - всё это позволило USB Flash Drive заменить или успешно конкурировать со всеми существовавшими ранее носителями информации.

Кодирование и считывание информации

Современный компьютер может обрабатывать числовую, текстовую, графическую, звуковую и видео информацию. Все эти виды информации в компьютере представлены в двоичном коде, т. е. используется алфавит мощностью два (всего два символа 0 и 1). Связано это с тем, что удобно представлять информацию в виде последовательности электрических импульсов: импульс отсутствует (0), импульс есть (1). Такое кодирование принято называть двоичным, а сами логические последовательности нулей и единиц – машинным языком.

Каждая цифра машинного двоичного кода несет количество информации равное одному биту. Данный вывод можно сделать, рассматривая цифры машинного алфавита, как равновероятные события. При записи двоичной цифры можно реализовать выбор только одного из двух возможных состояний, а, значит, она несет количество информации равное 1 бит. Следовательно, две цифры несут информацию 2 бита, четыре разряда – 4 бита и т. д. Чтобы определить количество информации в битах, достаточно определить количество цифр в двоичном машинном коде.

А) Кодирование текстовой информации

В настоящее время большая часть пользователей при помощи компьютера обрабатывает текстовую информацию, которая состоит из символов: букв, цифр, знаков препинания и др. Традиционно для того чтобы закодировать один символ используют количество информации равное 1 байту, т. е. I = 1 байт = 8 бит. При помощи формулы, которая связывает между собой количество возможных событий К и количество информации I, можно вычислить сколько различных символов можно закодировать (считая, что символы - это возможные события): К = 2I = 28 = 256, т. е. для представления текстовой информации можно использовать алфавит мощностью 256 символов. Суть кодирования заключается в том, что каждому символу ставят в соответствие двоичный код от 00000000 до 11111111 или соответствующий ему десятичный код от 0 до 255. Необходимо помнить, что в настоящее

Двоичный код Десятичный код КОИ8 СР1251 СР866 Мас ISO
11000010 194 б В - - Т

время для кодировки русских букв используют пять различных кодовых

таблиц (КОИ - 8, СР1251, СР866, Мас, ISO), причем тексты, закодированные при помощи одной таблицы, не будут правильно отображаться в другой кодировке. Наглядно это можно представить в виде фрагмента объединенной таблицы кодировки символов. Одному и тому же двоичному коду ставится в соответствие различные символы. Впрочем, в большинстве случаев о перекодировке текстовых документов заботится на пользователь, а специальные программы – конверторы, которые встроены в приложения.

Б) Кодирование графической информации

В середине 50-х годов для больших ЭВМ, которые применялись в научных и военных исследованиях, впервые в графическом виде было реализовано представление данных. Без компьютерной графики трудно представить уже не только компьютерный, но и вполне материальный мир, так как визуализация данных применяется во многих сферах человеческой деятельности. Графическую информацию можно представлять в двух формах: аналоговой или дискретной. Живописное полотно, цвет которого изменяется непрерывно - это пример аналогового представления, а изображение, напечатанное при помощи струйного принтера и состоящее из отдельных точек разного цвета - это дискретное представление. Путем разбиения графического изображения (дискретизации) происходит преобразование графической информации из аналоговой формы в дискретную. При этом производится кодирование - присвоение каждому элементу конкретного значения в форме кода. При кодировании изображения происходит его пространственная дискретизация. Ее можно сравнить с построением изображения из большого количества маленьких цветных фрагментов (метод мозаики). Все изображение разбивается на отдельные точки, каждому элементу ставится в соответствие код его цвета. При этом качество кодирования будет зависеть от следующих параметров: размера точки и количества используемых цветов. Чем меньше размер точки, а, значит, изображение составляется из большего количества точек, тем выше качество кодирования. Чем большее количество цветов используется (т. е. точка изображения может принимать больше возможных состояний), тем больше информации несет каждая точка, а, значит, увеличивается качество кодирования. Создание и хранение графических объектов возможно в нескольких видах – в виде векторного, фрактального или растрового изображения. Отдельным предметом считается 3D (трехмерная) графика, в которой сочетаются векторный и растровый способы формирования изображений. Она изучает методы и приемы построения объемных моделей объектов в виртуальном пространстве. Для каждого вида используется свой способ кодирования графической информации.

В) Кодирование звуковой информации

С самого детства мы сталкиваемся с записями музыки на разных носителях: грампластинках, кассетах, компакт-дисках и т.д. В настоящее время существует два основных способах записи звука: аналоговый и цифровой. Но для того чтобы записать звук на какой-нибудь носитель его нужно преобразовать в электрический сигнал. Это делается с помощью микрофона. Самые простые микрофоны имеют мембрану, которая колеблется под воздействием звуковых волн. К мембране присоединена катушка, перемещающаяся синхронно с мембраной в магнитном поле. В катушке возникает переменный электрический ток. Изменения напряжения тока точно отражают звуковые волны. Переменный электрический ток, который появляется на выходе микрофона, называется аналоговым сигналом. Применительно к электрическому сигналу «аналоговый» обозначает, что этот сигнал непрерывен по времени и амплитуде. Он точно отражает форму звуковой волны, которая распространяется в воздухе. Звуковую информацию можно представить в дискретной или аналоговой форме. Их отличие в том, что при дискретном представлении информации физическая величина изменяется скачкообразно («лесенкой»), принимая конечное множество значений. Если же информацию представить в аналоговой форме, то физическая величина может принимать бесконечное количество значений, непрерывно изменяющихся. Виниловая пластинка является примером аналогового хранения звуковой информации, так как звуковая дорожка свою форму изменяет непрерывно. Но у аналоговых записей на магнитную ленту есть большой недостаток – старение носителя. За год фонограмма, которая имела нормальный уровень высоких частот, может их потерять. Виниловые пластинки при проигрывании их несколько раз теряют качество. Поэтому преимущество отдают цифровой записи. В начале 80-х годов появились компакт-диски. Они являются примером дискретного хранения звуковой информации, так как звуковая дорожка компакт - диска содержит участки с различной отражающей способностью. Теоретически эти цифровые диски могут служить вечно, если их не царапать, т.е. их преимуществами являются долговечность и неподверженность механическому старению. Другое преимущество заключается в том, что при цифровой перезаписи нет потери качества звука. На мультимедийных звуковых картах можно найти аналоговые микрофонный предусилитель и микшер. Рассмотрим процессы преобразования звука из аналоговой формы в цифровую и наоборот. Примерное представление о том, что происходит в звуковой карте, может помочь избежать некоторых ошибок при работе со звуком. Звуковые волны при помощи микрофона превращаются в аналоговый переменный электрический сигнал. Он проходит через звуковой тракт и попадает в аналого-цифровой преобразователь (АЦП) – устройство, которое переводит сигнал в цифровую форму. В упрощенном виде принцип работы АЦП заключается в следующем: он измеряет через определенные промежутки времени амплитуду сигнала и передает дальше, уже по цифровому тракту, последовательность чисел, несущих информацию об изменениях амплитуды. Во время аналого-цифрового преобразования никакого физического преобразования не происходит. С электрического сигнала как бы снимается отпечаток или образец, являющийся цифровой моделью колебаний напряжения в аудиотракте. Если это изобразить в виде схемы, то эта модель представлена в виде последовательности столбиков, каждый из которых соответствует определенному числовому значению. Цифровой сигнал по своей природе дискретен - то есть прерывист, поэтому цифровая модель не совсем точно соответствует форме аналогового сигнала. Вывод цифрового звука происходит при помощи цифро-аналогового преобразователя (ЦАП), который на основании поступающих цифровых данных в соответствующие моменты времени генерирует электрический сигнал необходимой амплитуды.

Считывание информации – извлечение информации, хранящейся в запоминающем устройстве (ЗУ), и передача её в др. устройства вычислительной машины. Считывание информации производится при выполнении большинства машинных операций, а иногда является самостоятельной операцией. Считывание может сопровождаться разрушением (стиранием) информации в тех ячейках (зонах) ЗУ, откуда производилось считывание (как, например, в ЗУ на ферритовых сердечниках), или быть неразрушающим (например, в ЗУ на магнитных лентах, дисках) и, следовательно, допускающим многократное использование однажды записанной информации. Считывание информации характеризуется временем, затрачиваемым непосредственно на вывод данных из ЗУ; оно составляет от нескольких десятков наносек до нескольких милисек.

Рассмотрим процесс считывания информации на примере компакт-диска. Данные с диска читаются при помощи лазерного луча с длиной волны 780 нм. Принцип считывания информации лазером для всех типов носителей заключается в регистрации изменения интенсивности отражённого света. Лазерный луч фокусируется на информационном слое в пятно диаметром ~1,2 мкм. Если свет сфокусировался между питами (на ленде), то фотодиод регистрирует максимальный сигнал. В случае, если свет попадает на пит, фотодиод регистрирует ме́ньшую интенсивность света. Различие между дисками «только для чтения» и дисками однократной/многократной записи заключается в способе формирования питов. В случае диска «только для чтения» питы представляют собой некую рельефную структуру (фазовую дифракционную решетку), причём оптическая глубина каждого пита чуть меньше четверти длины волны света лазера, что приводит к разнице фаз в половину длины волны между светом, отражённым от пита и светом, отражённым от ленда. В результате в плоскости фотоприёмника наблюдается эффект деструктивной интерференции и регистрируется снижение уровня сигнала. В случае CD-R/RW пит представляет собой область с бо́льшим поглощением света, нежели ленд (амплитудная дифракционная решетка). В результате фотодиод также регистрирует снижение интенсивности отражённого от диска света. Длина пита изменяет как амплитуду, так и длительность регистрируемого сигнала.

Скорость чтения/записи CD указывается кратной 150 Кб/с (то есть 153 600 байт/с). Например, 48-скоростной привод обеспечивает максимальную скорость чтения (или записи) CD, равную 48 × 150 = 7200 Кб/с (7,03 Мб/с).

Перспективы развития

Развитие носителей записи информации идет в 3 основных направлениях:

а) увеличение объема полезной информации на конкретном носителе (особенно актуально для оптических дисков);

б) улучшение качества технического оборудования (время доступа к информации, скорость передачи данных);

в) постепенное повышение уровня сочетаемости различных форматов используемых носителей.

К перспективным видам носителей памяти относятся: Eye-Fi, Голографический многоцелевой диск (Holographic Versatile Disc), Millipede.

Eye-Fi - разновидность SD флеш-карт памяти со встроенными внутри карты аппаратными элементами поддержки Wi-Fi-технологии.

Карты могут быть использованы в любом цифровом фотоаппарате. Карта вставляется в соответствующее гнездо фотоаппарата, получая питание от фотоаппарата и при этом расширяя его функционал. Фотоаппарат, оснащённый такой картой может передавать отснятые фотоснимки или видеоролики на компьютер, в мировую сеть интернет на заранее запрограммированные ресурсы, которые осуществляют фото или видео хостинг подобного рода контента. Администрирование, доступ к настройкам и управление работой таких карт осуществляется по Wi-Fi с PC или Mac совместимого компьютера через браузер. Карта работает только через заранее прописанные Wi-Fi сети, поддерживаются шифрование WEP и WPA2.

Технические характеристики:

Емкость карты: 2, 4 или 8 Гигабайта

Поддерживаемые стандарты Wi-Fi: 802.11b, 802.11g

Безопасность Wi-Fi: cтатический WEP 64/128, WPA-PSK, WPA2-PSK

Размеры карты: SD стандарт - 32 х 24 х 2.1 мм

Вес карты: 2.835 г

Голографический многоцелевой диск (Holographic Versatile Disc) - разрабатываемая перспективная технология производства оптических дисков, которая предполагает значительно увеличить объём хранимых на диске данных по сравнению сBlu-Ray и HD DVD. Она использует технологию, известную как голография, которая использует два лазера: один - красный, а второй - зелёный, сведённые в один параллельный луч. Зелёный лазер читает данные, закодированные в виде сетки с голографического слоя близкого к поверхности диска, в то время как красный лазер используется для чтения вспомогательных сигналов с обычного компакт-дискового слоя в глубине диска. Вспомогательная информация используется для отслеживания позиции чтения, наподобие системы CHS в обычном жёстком диске. На CD или DVD эта информация внедрена в данные. Предполагаемая информационная ёмкость этих дисков - до 3.9 терабайт (TB), что сравнимо с 6000 CD, 830 DVD или 160 однослойными дисками Blu-ray; скорость передачи данных - 1 Гбит/сек. Optware собирался выпустить 200GB диск в начале июня 2006 года и Maxell в сентябре 2006 с ёмкостью 300GB. 28 июня 2007 года HVD стандарт был утверждён и опубликован.

Структура голографического диска (HVD)

1. Зелёный лазер чтения/записи (532nm)

2. Красный позиционирующий/индексный лазер (650nm)

3. Голограмма (данные)

4. Поликарбонатный слой

5. Фотополимерный (рhotopolimeric) слой (слой содержащий данные)

6. Разделяющий слой (Distans layers)

7. Слой отражающий зелёный цвет (Dichroic layer)

8. Алюминиевый отражающий слой (отражающий красный свет)

9. Прозрачная основа

P. Углубления

Millipede – относительно новая технология запоминающих устройств, разрабатываемая компанией IBM. Для считывания и записи информации используется зонд сканирующего зондового микроскопа. Также вопросами Millipede memory (Милипидовой памяти) занимаются учёные из Университета науки и технологий в Поханге (Южная Корея). Они смогли первыми в мире создать материал, подходящий для создания миллипидовой памяти. Особенность миллипидовой памяти заключается в том, что информация сохраняется в огромном количестве наноямок, покрывающем поверхность рабочего материала. При этом подобная память является энергонезависимой, и данные сохраняются в ней сколь угодно долго. Для создания действующего прототипа миллипидовой памяти корейские электронщики разработали уникальный полимерный материал. Только с его помощью удалось создать стабильно функционирующее запоминающее устройство, которое уже практически готово к внедрению в производство.

Заключение

В ходе реферата были рассмотрены основные виды носителей информации, принципы кодирования и считывания информации, а также перспективы развития носителей информации.

Также были рассмотрены история носителей информации (перфоленты, перфокарты, магнитные ленты, сменные и постоянные магнитные диски, магнитные барабаны, пакеты сменных магнитных дисков); накопители на гибких магнитных дисках, накопители на жестких магнитных дисках, CD-диски, DVD-диски, портативные USB-накопители, USB Flash Drive. Были рассмотрены кодирование (текстовое, графическое, звуковое) и считывание информации (на примере считывание информации с CD-диска). Самыми перспективными на сегодняшний день считаются Eye-Fi, Голографический многоцелевой диск (Holographic Versatile Disc) и Millipede.

В эпоху становления человеческого общества людям хватало стен пещеры, чтобы зафиксировать нужную им информацию. Такая «база данных» целиком уместилась бы да флэш-карте размером в мегабайт. Однако за последние несколько десятков тысяч лет объем информации, которой вынужден оперировать человек, существенно возрос. Теперь для хранения данных широко используются дисковые накопители и облачные хранилища данных.

Считается, что история записи информации и ее хранения началась около 40 тыс. лет назад. Поверхности скал и стены пещер сохранили изображения представителей животного мира позднего палеолита. Гораздо позже в обиход вошли пластинки из глины. На поверхности такого древнего «планшета» человек мог наносить изображения и делать записи посредством заостренной палочки. Когда глиняный состав высыхал, запись фиксировалась на носителе. Недостаток глиняной формы хранения информации очевиден: такие таблички отличались хрупкостью и недолговечностью.

Примерно пять тысяч лет назад в Египте стали использовать более совершенный носитель информации - папирус. Сведения заносили на особые листы, которые изготовлялись из специально обработанных стеблей растения. Этот вид хранения данных был более совершенным: листы папируса легче глиняных табличек, писать на них гораздо удобнее. Данный вид хранения информации дожил в Европе до XI века новой эры.

В другой части света - в Южной Америке - хитроумные инки изобрели тем временем узелковое письмо. Информация в данном случае закреплялась при помощи узлов, которые в определенной последовательности завязывали на нити или веревке. Существовали целые «книги» из узелков, где фиксировались сведения о численности населения империи инков, о налоговых сборах, хозяйственной деятельности индейцев.

Впоследствии основным носителем информации на планете на несколько веков стала бумага. Ее применяли для печатания книг и средств массовой информации. В начале XIX века стали появляться первые перфокарты. Их делали из плотного картона. Эти примитивные машинные носители информации стали широко использовать для механического счета. Они нашли применение, в частности, при проведении переписей населения, их использовали и для управления ткацкими станками. Человечество вплотную приблизилось к технологическому прорыву, который произошел в XX веке. На смену механическим устройствам пришла электронная техника.

Что такое носители информации

Все материальные объекты способны нести в себе какую-либо информацию. Принято считать, что носители информации наделены вещественными свойствами и отражают определенные отношения между объектами действительности. Материальные свойства объектов определяются характеристиками веществ, из которых выполнены носители. Свойства отношений находятся в зависимости от качественных особенностей процессов и полей, посредством которых носители информации проявляются в материальном мире.

В теории информационных систем принято подразделять носители информации по происхождению, форме и размеру. В самом простом случае носители информации делят на:

  • локальные (к примеру, жесткий диск персонального компьютера);
  • отчуждаемые (съемные дискеты и диски);
  • распределенные (ими могут считаться линии связи).

Последний вид (каналы связи) можно при определенных условиях считать как носителями информации, так и средой для ее передачи.

В самом общем смысле носителями информации могут считаться разные по своей форме объекты:

  • бумага (книги);
  • пластинки (фотопластинки, граммофонные пластинки);
  • пленки (фото-, кинопленка);
  • аудиокассеты;
  • микроформы (микрофильм, микрофиша);
  • видеокассеты;
  • компакт-диски.

Многие носители информации известны с древних времен. Это каменные плиты с нанесенными на них изображениями; глиняные таблички; папирус; пергамент; береста. Гораздо позже появились иные искусственные носители информации: бумага, различные виды пластмассы, фотографические, оптические и магнитные материалы.

Информация заносится на носитель посредством изменения каких-либо физических, механических или химических свойств рабочей среды.

Общие сведения об информации и способах ее хранения

Любое природное явление так или иначе связано с сохранением, преобразованием и передачей информации. Она может быть дискретной или непрерывной.

В самом общем смысле носитель информации - это некая физическая среда, которую можно использовать для регистрации изменений и накопления информации.

Требования к искусственным носителям информации:

  • высокая плотность записи;
  • возможность неоднократного использования;
  • большая скорость считывания информации;
  • надежность и долговечность хранения данных;
  • компактность.

Отдельная классификация разработана для носителей информации, применяемых в электронно-вычислительных комплексах. К таким носителям информации относят:

  • ленточные носители;
  • дисковые носители (магнитные, оптические, магнитооптические);
  • флэш-носители.

Такое деление носит условный характер и не является исчерпывающим. При помощи особых устройств на компьютерной технике можно работать с традиционными аудио- и видеокассетами.

Характеристики отдельных носителей информации

В свое время наибольшую популярность получили магнитные носители информации. Данные в них представлены в виде участков магнитного слоя, который наносится на поверхность физического носителя. Сам носитель может иметь вид ленты, карты, барабана или диска.

Информация на магнитном носителе сгруппирована в зоны с промежутками между ними: они необходимы для качественной записи и считывания данных.

Носители информации ленточного типа используются для резервного копирования и хранения данных. Они представляют собой магнитную ленту объемом до 60 Гб. Иногда такие носители имеют вид ленточных картриджей значительно большего объема.

Дисковые носители информации могут быть жесткими и гибкими, сменными и стационарными, магнитными и оптическими. Они имеют обычно форму дисков или дискет.

Магнитный диск имеет вид пластмассового или алюминиевого плоского круга, который покрыт магнитным слоем. Фиксация данных на таком объекте осуществляется путем магнитной записи. Магнитные диски бывают переносными (сменными) или несменными.

Гибкие магнитные диски (флоппи-диски) имеют объем 1,44 Мб. Они упакованы с особые пластмассовые корпуса. Иначе такие носители информации именуют дискетами. Назначение их - временное хранение информации и перенос данных с одного компьютера на другой.

Жесткий магнитный диск нужен для постоянного хранения данных, которые часто используются в работе. Такой носитель представляет собой пакет их сцепленных между собой нескольких дисков, заключенных в прочный герметичный корпус. В обиходе жесткий диск часто называют «винчестером». Емкость такого накопителя может достигать нескольких сотен Гб.

Магнитооптический диск - это носитель информации, помещенный в особый пластиковый конверт, называемый картриджем. Это универсальное и очень надежное вместилище данных. Его отличительная черта - высокая плотность хранимой информации.

Принцип записи информации на магнитный носитель

Принцип записи данных на магнитный носитель основан на использовании свойств ферромагнетиков: они способны сохранять намагниченность после снятия действующего на них магнитного поля.

Магнитное поле создает соответствующая магнитная головка. В ходе записи двоичный код принимает форму электрического сигнала и подается на обмотку головки. Когда ток протекает через магнитную головку, вокруг нее формируется магнитное поле определенной напряженности. Под действием такого поля в сердечнике образуется магнитный поток. Его силовые линии замыкаются.

Магнитное поле взаимодействует с носителем информации и создает в нем состояние, которое характеризуется некоторой магнитной индукцией. Когда импульс тока прекращается, носитель сохраняет свое состояние намагниченности.

Чтобы воспроизвести запись, используют считывающую головку. Магнитное поле носителя замыкается через сердечник головки. Если носитель перемещается, изменяется магнитный поток. В считывающую головку поступает сигнал воспроизведения.

Одна из важных характеристик магнитного носителя информации - плотность записи. Она находится в прямой зависимости от свойств магнитного носителя, типа магнитной головки и ее конструкции.

Электронные носители информации

Технология записи информации на магнитные носители появилась сравнительно недавно - примерно в середине 20-го века (40-ые - 50-ые годы). Но уже несколько десятилетий спустя - в 60-ые - 70-ые годы - это технология стала очень распространённой во всём мире.

Магнитная лента состоит из полоски плотного вещества, на которую напыляется слой ферромагнетиков. Именно на этот слой "запоминается" информация. Процесс записи также похож на процесс записи на виниловые пластинки - при помощи магнитной индукционной катушки вместо специального аппарата на головку подаётся ток, который приводит в действие магнит. Запись звука на плёнку происходит благодаря действию электромагнита на плёнку. Магнитное поле магнита меняется в такт со звуковыми колебаниями, и благодаря этому маленькие магнитные частички (домены) начинают менять своё местоположение на поверхности плёнки в определённом порядке, в зависимости от воздействия на них магнитного поля, создаваемого электромагнитом. А при воспроизведении записи наблюдается процесс обратный записи: намагниченная лента возбуждает в магнитной головке электрические сигналы, которые после усиления поступают дальше в динамик.

Компамкт-кассемта (аудиокассемта или просто кассемта) -- носитель информации на магнитной ленте, во второй половине XX века -- распространённый медианоситель для звукозаписи. Применялся для записи цифровой и аудиоинформации. Впервые компакт-кассета была представлена в 1964 году компанией Philips. По причине своей относительной дешевизны долгое время (с начала 1970-х по 1990-е годы) компакт-кассета была самым популярным записываемым аудионосителем, однако, начиная с 1990-х годов,

была вытеснена компакт-дисками.

Сейчас в мире присутствует множество различных типов магнитных носителей: дискеты для компьютеров, аудио- и видеокассеты, бобинные ленты и.т.д. Но постепенно открываются новые законы физики, и вместе с ними - новые возможности записи информации. Всего пару десятков лет назад появилось множество носителей информации, базирующихся на новой технологии - считывания информации при помощи линз и лазерного луча.

Развитие материальных носителей документированной информации в целом идёт по пути непрерывного поиска объектов с высокой долговечностью, большой информационной ёмкостью при минимальных физических размерах носителя. Начиная с 1980-х годов, всё более широкое распространение получают оптические (лазерные) диски. Это пластиковые или алюминиевые диски, предназначенные для записи и воспроизведения информации при помощи лазерного луча.

По технологии применения оптические, магнитооптические и цифровые компакт-диски делятся на 3 основных класса:

1. Диски, допускающие однократную запись и многократное воспроизведение сигналов без возможности их стирания (CD-R; CD-WORM - Write-Once, Read-Many - один раз записал, много раз считал). Используются в электронных архивах и банках данных, во внешних накопителях ЭВМ.

2. Реверсивные оптические диски, позволяющие многократно записывать, воспроизводить и стирать сигналы (CD-RW, CD-E). Это наиболее универсальные диски, способные заменить магнитные носители практически во всех областях применения.

3. Цифровые универсальные видеодиски DVD (Digital Versatile Disk) типа DVD-ROM, DVD-RAM, DVD-R с большой ёмкостью (до 17 Гбайт).

Название оптических дисков определяется методом записи и считывания информации. Информация на дорожке создается мощным лазерным лучом, выжигающим на зеркальной поверхности диска впадины, и представляет собой чередование впадин и отражающих участков. При считывании информации зеркальные островки отражают свет лазерного луча и воспринимаются как единица (1), впадины не отражают луч и соответственно воспринимаются как ноль (0). Этот принцип позволяет достичь высокой плотности записи информации, а следовательно и большой емкости при минимальных размерах. Компакт-диск является идеальным средством хранения информации - дешев до смешного, практически не подвержен каким-либо влияниям среды, информация записанная на нем не исказится и не сотрется, пока диск не будет уничтожен физически, имеет ёмкость 700 Мбайт.

Магнитооптический диск -- носитель информации, сочетающий свойства оптических и магнитных накопителей. Диск изготовлен с использованием ферромагнетиков. Магнитооптические диски при всех своих достоинствах имеют серьёзные недостатки: относительно низкую скорость записи, вызванную необходимостью перед записью стирать содержимое диска, а после записи--проверкой на чтение; высокое энергопотребление - для разогрева поверхности требуются лазеры значительной мощности, а следовательно и высокого энергопотребления. Это затрудняет использование пишущих МО приводов в мобильных устройствах.

DVD (ди-ви-дим, англ. Digital Versatile Disc -- цифровой многоцелевой диск) -- носитель информации в виде диска, внешне схожий с компакт-диском, однако имеющий возможность хранить бомльший объём информации за счёт использования лазера с меньшей длиной волны, чем для обычных компакт дисков. Первые диски и проигрыватели DVD появились в ноябре 1996 в Японии и в марте 1997 в США. Они предназначались для записи и хранения видеоизображений. Интересно, что первые DVD-"болванки" объёмом 3,95 Гб стоили тогда 50$ за штуку. В настоящее время существует шесть разновидностей подобных дисков ёмкостью от 4,7 до 17,1 Гб. Они используются для записи и хранения любой информации: видео, аудио, данных.

Работа с информацией в наше время не мыслима без компьютера, так как он изначально создавался как средство обработки информации и только теперь он стал выполнять множество других функций: хранение, преобразование, создание и обмен информацией. Но прежде чем принять привычную сейчас форму компьютер претерпел три революции.

Первая компьютерная революция свершилась в конце

50-х годов; ее суть можно описать двумя словами: компьютеры появились.

Изобретены они были не менее чем за десять лет до этого, но именно в то время начали выпускаться серийные машины, эти машины перестали быть объектом исследований для ученых и диковинкой для всех остальных. Через полтора десятилетия после этого ни одна крупная организация не могла себе позволить обходиться без вычислительного центра. Если тогда заходила речь о компьютере, сразу же представлялись заполненные стойками машинные залы, в которых напряженно думают люди в белых халатах. И тут свершилась вторая революция. Практически одновременно несколько фирм обнаружили, что развитие техники достигло такого уровня, когда вокруг компьютера не обязательно воздвигать вычислительный центр, а сам он стал небольшим. Это были первые мини-ЭВМ. Но прошло еще десять с небольшим лет, и наступила третья революция - в конце 70-х возникли персональные компьютеры. За короткое время, пройдя путь от настольного калькулятора до полноценной небольшой машины, ПК заняли свои места на рабочих столах индивидуальных пользователей.

В тот самый момент, когда первый компьютер впервые обработал несколько байт данных моментально встал вопрос: где и как хранить полученные результаты? Как сохранять результаты вычислений, текстовые и графические образы, произвольные наборы данных?

Прежде всего, должно быть устройство с помощью которого компьютер будет запоминать информацию, затем требуется носитель информации, на котором ее можно будет переносить с места на место, причем другой компьютер должен также легко прочитать эту информацию. Рассмотрим некоторые из этих устройств.

1. Устройство чтения перфокарт: предназначено для хранения программ и наборов данных с помощью перфокарт - картонных карточек с пробитыми в определенной последовательности отверстиями. Перфокарты были изобретены задолго до появления компьютера, с их помощью на ткацких станках получали очень сложные и красивые ткани, потому что они управляли работой механизма. Изменишь набор перфокарт и рисунок ткани будет совсем другим - это зависит от расположения отверстий на карте. Применительно к компьютерам был использован тот же принцип, только вместо рисунка ткани отверстия задавали команды компьютеру или наборы данных. Такой способ хранения информации не лишен недостатков: - очень низкая скорость доступа к информации; - большой объем перфокарт для хранения небольшого количества информации; - низкая надежность хранения информации; - к тому же от перфоратора постоянно летели маленькие кружочки картона, которые попадали на руки, в карманы, застревали в волосах и уборщицы были страшно недовольны. Перфокартами люди были вынуждены пользоваться не потому что этот способ как-то особенно нравился им, или он имел какие-то неоспоримые достоинства, вовсе нет, он вообще не имел достоинств, просто в то время ничего другого еще не было, выбирать было не из чего, приходилось выкручиваться.

2. Накопитель на магнитной ленте (стриммер): основан на использовании устройства магнитофонного типа, и кассет с магнитной пленкой. Этот способ накопления информации известен давно и успешно применяется и сегодня. Это объясняется тем, что на небольшой кассете помещается довольно большой объем информации, информация может храниться продолжительное время и скорость доступа к ней гораздо выше, чем у устройства чтения перфокарт. С другой стороны стриммер пригоден только для накопления, хранения больших массивов информации, резервирования данных. Обрабатывать информацию с помощью стриммера практически невозможно: стример - устройство последовательного доступа к данным: чтобы получить 5-й файл мы должны промотать четыре. А если нужен 7529-й?

3. Накопитель на гибких магнитных дисках (НГМД - дисковод). Это устройство использует в качестве носителя информации гибкие магнитные диски - дискеты, которые могут быть 5-ти или 3-х дюймовыми. Дискета - это магнитный диск вроде пластинки, помещенный в картонный конверт. В зависимости от размера дискеты изменяется ее емкость в байтах. Если на стандартную дискету размером 5"25 дюйма помещается до 720 Кбайт информации, то на дискету 3"5 дюйма уже 1,44 Мбайта. Дискеты универсальны, подходят на любой компьютер того же класса оснащенный дисководом, могут служить для хранения, накопления, распространения и обработки информации. Дисковод - устройство параллельного доступа, поэтому все файлы одинаково легко доступны. К недостаткам относятся маленькая емкость, что делает практически невозможным долгосрочное хранение больших объемов информации, и не очень высокая надежность самих дискет.

4. Накопитель на жестком магнитном диске (НЖМД - винчестер): является логическим продолжением развития технологии магнитного хранения информации. Имеют очень важные достоинства: - чрезвычайно большая емкость; - простота и надежность использования; - возможность обращаться к тысячам файлов одновременно; - высокая скорость доступа к данным.

5. Уже рассмотренные нами CD и DVD-диски.

Но так как потоки информации только увеличиваются то для ее создания, обработки, хранения и передачи необходимо разрабатывать все новые и новые средства и приспособления.

Мы уже рассматривали выше хранение данных на CD и DVD-дисках. Несмотря на их удобство, в связи с необходимостью использования максимально большого объема информации, уже начинается процесс их вытеснения. В ближайшие годы в таких устройствах персональной вычислительной техники, как компьютер, флэш-память будет грозным соперником жёстких дисков.

6. Флеш-память (англ. Flash-Memory) -- разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти.

Благодаря своей компактности, дешевизне и низкой потребности в электроэнергии флеш-память уже широко используется в портативных устройствах, работающих на батарейках и аккумуляторах -- цифровых фотокамерах и видеокамерах, цифровых диктофонах, MP3-плеерах, КПК, мобильных телефонах, а также смартфонах. Кроме того, она используется для хранения встроенного программного обеспечения в различных периферийных устройствах (маршрутизаторах, мини-АТС, коммуникаторах, принтерах, сканерах). Не содержит подвижных частей, так что, в отличие от жёстких дисков, более надёжна и компактна.

Основное слабое место флеш-памяти -- количество циклов перезаписи. Она может быть прочитана сколько угодно раз, но писать в такую память можно лишь ограниченное число раз (обычно около 10 тысяч раз). Несмотря на то, что такое ограничение есть, 10 тысяч циклов перезаписи -- это намного больше, чем способна выдержать дискета или компакт-диск. Флеш-память наиболее известна применением в USB флеш-носителях (англ. USB flash drive). Благодаря большой скорости, объёму и компактным размерам USB флеш-носители уже вытесняют с рынка компакт-диски.

Допечатные процессы предъявляют особые требования к регистрирующим средствам, использующимся для хранения информации. Такие требования являются следствием не только постоянных потребностей, связанных с увеличением объемов сохраняемых данных, обрабатываемых в процессе производства печатной продукции. Память имеет исключительное значение для постоянного резервирования данных внутри сети рабочих станций, а также для безопасной пересылки и архивирования данных. Несмотря на возросшие возможности передачи данных через сети или через Интернет, среды для сохранения данных будут продолжать играть важную роль в обмене информацией между заказчиком и исполнителем.

Благодаря новым технологиям и производственным процессам емкость носителей, предназначенных для хранения информации, постоянно увеличивается. Имеются предпосылки, что этот рост составит около 80% в год. Суть увеличения объемов хранения данных включает, вероятно, совокупность следующих факторов: повышение плотности записи, числа дорожек и оптимальное использование поверхности носителя. Супердиск с объемом памяти 120 Мб действительно соответствует данной задаче, несмотря на то, что по внешнему виду он является почти таким же, как гибкий 3,5-дюймовый диск. Однако супердиск по объему памяти превосходит последний почти в 83 раза. Сведения об объемах памяти различных носителей приведены в табл. 5.

Классификация носителей данных

Все имеющиеся в настоящее время носители информации могут подразделяться по различным признакам. В первую очередь, следует различать энергозависимые и энергонезависимые накопители информации.

Энергонезависимые накопители, используемые для архивирования и сохранения массивов данных, подразделяют:

Если требуется быстрый доступ к информации, как, например, при выводе или передаче данных, то используются носители с вращающимся диском. Для архивирования, выполняемого периодически (Backup), наоборот, более предпочтительными являются ленточные носители. Они имеют большие объемы памяти в сочетании с невысокой ценой, правда, при относительно невысоком быстродействии.

По назначению носители информации различаются на три группы:

  • распространение информации: носители с предварительно записанной информацией, такие как CD ROM или DVD-ROM;
  • архивирование: носители для одноразовой записи информации, такие как CD-R или DVD-R (R (record able) – для записи);
  • резервирование (Backup) или передача данных: носители с возможностью многоразовой записи информации, такие как дискеты, жесткий диск, MO, CD-RW (RW (rewritable) – перезаписываемые и ленты.
CD и DVD (ROM, R, RW)

CD-ROM был первоначально создан для того, чтобы распространять большие объемы информации (например, музыку и т.д.) за умеренную плату. Между тем он стал наиболее используемым носителем информации и для меньших объемов данных, например, при личном пользовании. В обозримом будущем CD-ROM могут быть заменены на DVD-ROM. DVD имеет емкость памяти от 4,7 до 17 GB. DVD-ROM может использоваться для распространения программных продуктов, мультимедиа, банков данных и для записи художественных фильмов. Увеличение объема памяти здесь стало возможным благодаря технологии двойного слоя. Она позволяет наносить на верхнюю и нижнюю стороны диска по два накопительных слоя, которые разделяются полуотражающим промежуточным слоем. При считывании информации лазер "прыгает" между обоими накопительными слоями.

Компакт-диск, кратко называемый CD-R (или, соответственно, DVD-R), представляет собой оптическую пластину для одноразовой записи в формате 5,25 дюйма с большой плотностью. Запись на такой диск может быть произведена только один раз в специальном записывающем устройстве. После этого информацию можно считывать посредством обычного дисковода CD-ROM. Типичная область применения – это передача информации в ограниченном количестве.

Более гибким, но менее распространенным является CD-RW (Rewritable). Этот сменный носитель информации может быть перезаписан заново до 1000 раз. Нанесенный слой при записи в результате термооптического процесса изменяет свою структуру с кристаллической на аморфную. В результате на этих местах изменяются отражающие свойства несущего слоя. Интенсивность излучения, соответствующая отражению от светлых или темных участков, преобразуется в бинарные числа 1 или 0.

Сменные накопители

Работа сменного накопителя основывается на использовании магнитных слоев, служащих для многократной записи информации.

Сменные диски SyQuest.

Производитель SyQuest, начав с выпуска дисков емкостью 44 Мб, довел со временем их память до 1,5 Гб. При этом увеличение памяти потребовало применения и нового дисковода. Эти сменные магнитные диски стали часто используемыми носителями данных в допечатных процессах. Картриджи данных. Начиная с 70-х годов эти магнитные накопители относятся к основным средам для резервирования данных. Главным образом они используются для резервного копирования данных на жестком диске персональных компьютеров (PC). Часто при резервировании в сети система автоматически подключает несколько картриджей для обработки накопителей со сменными дисками. Картриджи выпускаются в форматах 5,25 и 3,5 дюйма. Дисководы, предлагаемые различными изготовителями, бывают встроенными или присоединенными к персональному компьютеру. По сравнению с гибкими дисками скорость пересылки данных у картриджей выше, однако она меньше, чем у жестких дисков. Магнитный ленточный носитель данных (ширина ленты 4 или 8 мм). Среди множества четырех- и восьмимиллиметровых ленточных носителей информации имеются такие, которые в соответствии с новыми разработками отличаются более надежной защитой данных. Это свойство достигнуто благодаря тому, что уменьшено воздействие на подобные ленты статического электричества. Четырехмиллиметровые ленточные носители информации имеют емкость до 4 Гб. У восьмимиллиметровых носителей – 5 Гб. Они используются в банках данных, когда на магнитных лентах должны автоматически сохраняться большие массивы информации.



SuperDisk, ZIP, JAZ. Гибкий диск 3,5 дюйма является наиболее распространенным накопительным носителем в мире. В настоящее время в разработке находятся две системы: технология ZIP фирмы Iomega и SuperDisk (ранее называвшийся LS-120) фирмы Imation.

SuperDisk предоставляет возможность размещения информации объемом 120 Мб и почти не отличается внешне от традиционной 3,5-дюймовой дискеты. Носитель информации недорогой и "совместим в обе стороны", т.е. на новых дисководах можно также считывать и записывать классические дискеты 1,44 Мб.

Дискеты ZIP фирмы Iomega имеют объем от 100 до 250 Мб и по цене сопоставимы с носителем SuperDisk. Дискеты ZIP в настоящее время очень распространены в издательском деле, из чего можно сделать заключение о соответствующей потребности в сменных носителях такого вида. ZIP не "совместим в обе стороны", а дисковод может обрабатывать только носители ZIP. Время доступа к информации у диска ZIP меньше, чем у диска SuperDisk.

Дискеты 3,5 дюйма "JAZ" фирмы Iomega имеют объем хранения информации до 2 Гб. Магнитооптический диск (CD-MO). Магнитооптические носители, кратко называемые MO, получили широкое распространение. В пользу этой технологии однозначно говорит объем памяти: 640 Мб на носителе 3,5 дюйма и 2,6 Гб на носителе 5,25 дюйма. Их развитие идет быстро. Уже сегодня такие изготовители, как Sony и Philips, говорят об объеме 2,6 Гб у носителей 3,5 дюйма и 10,4 Гб у носителей 5,25 дюймо вого формата. Дисководы MO достигают скорости передачи данных 4 Мб/с, а среднее время доступа составляет менее 25 мс. Размещение и запись данных осуществляются посредством лазера.



Жесткие диски. Наконец следует упомянуть жесткие диски, которые входят в стандартную комплектацию практически каждого компьютера. Объем памяти этих носителей информации постоянно увеличивается и в последнее время достиг около 80 Гб для 31/2’’ диска.

В русском языке так много понятий, что порой тяжело различить два очень похожих, но все же разных определения. Но есть такие термины, которые не несут в себе дополнительных смыслов, а имеют четкое и понятное толкование. К примеру, понятие «электронный носитель информации». Это определение материального носителя, который записывает, хранит и воспроизводит данные, которые обрабатываются благодаря вычислительной технике.

С чего все началось?

Более общим значением данного термина является «носитель информации» или «информационный носитель». Оно определяет материальный объект или среду, которая используется человеком. При этом такой предмет долго хранит данные, не используя дополнительное оборудование.

Если для хранения информации на электронных носителях нужен источник энергии, то простой носитель данных может оказаться камнем, деревом, бумагой, металлом и другими материалами.

Носителем информации может называться любой объект, который показывает данные, нанесенные на него. Считается, что информационные носители нужны для записи, хранения, чтения, передачи материалов.

Особенности

Нетрудно догадаться, что электронный носитель информации - это разновидность информационного носителя. Он также имеет свою классификацию, которая, хотя и не установлена официально, но используется многими специалистами.

Например, электронные носители могут иметь однократную или многократную запись. Здесь подразумеваются устройства:

  • оптические;
  • полупроводниковые;
  • магнитные.

Каждый из этих механизмов имеет несколько видов оборудования.

Электронный носитель информации - это, прежде всего, ряд преимуществ перед бумажными вариантами. Во-первых, благодаря технологиям объем архивируемых данных может быть практически неограниченным. Во-вторых, сам сбор и подача актуальной информации эргономичные и быстрые. В-третьих, цифровые данные представлены в удобном виде.

Но электронный носитель имеет и свои недостатки. К примеру, сюда можно отнести ненадежность оборудования, в некоторых случаях габариты устройства, зависимость от электроэнергии, а также требования к постоянному наличию аппарата, который бы мог считывать файлы с такого цифрового накопителя.

Разновидность: оптические диски

Электронный носитель информации - это устройство, которое может быть оптическим, полупроводниковым, магнитным. Это единственная классификация такого оборудования.

В свою очередь, оптические устройства также делятся на виды. Сюда относят лазерный диск, компакт-диск, мини-диски, Blu-ray, HD-DVD и так далее. Оптический диск назван так благодаря технологии считывания информации. Чтение с диска происходит с помощью оптического излучения.

Идея этого электронного носителя зародилась давно. Ученые, которые разрабатывали технологию, были удостоены Нобелевской премии. Способ воспроизводить информацию с оптического диска появился еще в 1958 году.

Сейчас оптический электронный носитель имеет 4 поколения. В первом поколении были: лазерный диск, компакт-диск и мини-диск. Во втором поколении популярными стали DVD и CD-ROM. В третьем поколении выделились Blu-ray и HD-DVD. В четвертом поколении активно развиваются Holographic Versatile Disc и SuperRens Disc.

Полупроводниковые носители

Следующий вид электронного носителя информации - это полупроводниковый. Сюда относят флеш-накопители и SSD-диски.

Флеш-память - это самый популярный электронный носитель, который имеет полупроводниковую технологию и программируемую память. Он востребован благодаря своим небольшим размерам, невысокой цене, механической прочности, приемлемому объему, скорости работы и низкому потреблению энергии.

Недостатками такого варианта являются ограниченный срок использования и зависимость от электростатического разряда. Впервые о флеш-накопителе заговорили в 1984 году.

SSD-диск - это полупроводниковый электронный носитель, который также называют твердотельным накопителем. Он пришел на смену жесткому диску, хотя на данный момент полностью не заменил его, а лишь стал дополнением к домашним системам. В отличие от жесткого диска, твердотельный накопитель основан на микросхемах памяти.

Главными преимуществами такого носителя являются его компактные размеры, высокая скорость, износостойкость. Но вместе с этим у него большая стоимость.

Магнитные диски

И последним видом электронного носителя считаются магнитные устройства. К ним относят магнитные ленты, дискеты и жесткие диски. Поскольку первое и второе оборудование сейчас не используется, речь пойдет о ЖД.

Жесткий диск - это устройство, которое имеет произвольный доступ и основано на технологии магнитной записи. На данный момент это основной накопитель большинства современных компьютерных систем.

Его главным отличием от предыдущего вида, дискеты, является то, что запись осуществляется на алюминиевые или стеклянные пластины, которые покрывают слоем ферромагнитного материала.

Другие варианты

Несмотря на то что, говоря об электронных носителях, мы часто вспоминаем устройства, подключаемые к компьютеру, это не значит, что данное понятие применяется только в компьютерной технологии.

Распространение электронного носителя связано с удобством его использования, высокой скоростью записи и чтения. Поэтому это оборудование вытесняет бумажные носители.

Документы

Что такое паспорт с электронным носителем информации? Сначала этот вопрос может загнать человека в тупик. Но если хорошенько поразмыслить, то вспоминается такое понятие, как «биометрический паспорт».

Это государственный документ, который удостоверяет личность и гражданство путешественника в момент его переезда за границу государства и нахождения в другой стране. По сути, перед нами тот же паспорт, но с некоторыми нюансами.

Разница между биометрическим документом и традиционным паспортом в том, что первый является носителем специально вмонтированной микросхемы, которая хранит фотокарточку владельца и его личные данные.

Благодаря небольшой микросхеме можно получить фамилию, имя и отчество владельца документа, его дату рождения, номер паспорта, время выдачи и конец периода действия. По образцу, в микросхеме должны находиться биометрические данные человека. Сюда относят рисунок радужной оболочки глаза либо отпечаток пальца.

Введение документа: преимущества и недостатки

Несмотря на то что биометрический паспорт давно введен многими государствами, некоторые граждане негативно к нему относятся. Но у этого документа есть как преимущества, так и недостатки.

К преимуществам можно отнести то, что прохождение пограничного пункта теперь не занимает много времени. Если в таких местах есть специальное оборудование, которое может считывать микрочип, то прохождение границы становится безопасным и быстрым.

Но биометрический паспорт нравится далеко не всем гражданам. Многие считают, что введение подобного документа является проявлением тотального контроля, за которым стоит правительство США.

Уголовное дело

Развитие электронных носителей информации коснулось многих сфер. Сюда же можно отнести и уголовное дело. В 2012 году в Уголовно-процессуальный кодекс РФ ввели термин электронного носителя информации. Таким образом, подобные устройства могли стать вещественными доказательствами.

Электронные носители информации стали важной деталью при расследовании уголовного дела, при соблюдении некоторых условий. К примеру, данные с носителя должны иметь прямое отношение к расследованию. Кроме того, передачу их должен осуществлять достоверный источник, который можно было бы проверить. Данные должны иметь особый вид, к примеру, представленные видеозаписью, фотографиями, скриншотами и так далее. При изъятии цифровой информации нужно соблюдать установленные законы.

В ходе расследования уголовного дела необходимо вести и учет электронных носителей информации. В этом случае заводится журнал, в котором прописываются все устройства. Каждому присваивается идентификационный номер.

Важность электронных носителей в расследовании уголовного дела является спорным вопросом по сей день. Законодательно подобные устройства не отнесены к какому-либо источнику доказательств. Отсюда могут возникать разногласия.

Выводы

Электронные носители информации для современного человека - настоящая находка. С развитием технологий объемы архивов, которые хранят данные, становятся все больше. С каждым годом появляются новые возможности передачи и чтения информации.



Похожие публикации