Телевизоры. Приставки. Проекторы и аксессуары. Технологии. Цифровое ТВ

Обзор каналов передачи данных. Коммутация каналов, сообщений и пакетов. Диаграмма обмена сигналами в системах коммутации. Способы организации сетей связи. Типы городских сетей телефонной связи. Функции эксплуатационного управления

В сетях с коммутацией каналов между вызывающей и вызываемой оконечными установками в течение всего времени передачи имеется сквозное соединение (рис. 3.3).

Рис. 3.3. Сегь с коммутацией каналов

Соединительный тракт состоит из ряда участков, которые в процессе установления соединения включаются последовательно друг за другом. Он является «прозрачным» в отношении кодов, используемых в оконечных установках при передаче данных, и методов управления. Время распространения сигнала данных по соединительному тракту постоянно.

В сеансе связи различают три фазы: установление соединения, передачу данных и разъединение соединения (см. рис. 3.1 а). Процессом установления соединения управляет вызывающая

оконечная установка, которая посылает в свой коммутационный узел сигнал вызова, получает от узла ответный сигнал (приглашение к набору номера) и вслед за этим передает в узел адресную информацию (знаки набора номера). Коммутационный узел обрабатывает эту информацию, занимает один из каналов в пучке, ведущем к следующему коммутационному узлу, и передает последнему знаки набора, необходимые для дальнейшего установления соединения. Таким образом постепенно по участкам вплоть до вызываемой оконечной установки образуется соединительный тракт. После завершения этого процесса от сети на вызывающую и вызываемую оконечные установки поступают сигналы, извещающие о том, что соединение включено и готово к передаче данных.

С этого момента ход передачи данных определяется оконечной установкой. В оконечной установке (автоматически или с участием абонента) принимается решение о мерах, которые необходимо принять для обнаружения и исправления ошибок передачи. Меры могут быть различными в зависимости от тех или иных условий работы.

Разъединение может быть начато любой из двух связанных между собой оконечных установок с помощью сигнала отбоя. По этому сигналу все коммутационные узлы, участвующие в образовании соединительного тракта, отключают соединения.

Среди сетей передачи данных с коммутацией каналов различают два типа: синхронные и асинхронные сети.

3.3.1. АСИНХРОННЫЕ СЕТИ С КОММУТАЦИЕЙ КАНАЛОВ

3.3.1.1. ОТЛИЧИТЕЛЬНЫЕ ПРИЗНАКИ АСИНХРОННЫХ СЕТЕЙ

В асинхронных сетях общая синхронизация по элементам отсутствует и для сети не задаются единые «такты». Отдельные АПД и коммутационные устройства имеют самостоятельные, независимые друг от друга тактовые генераторы.

На рис. 3.4 схематически изображена структура такой сети с оконечными установками, многоканальным оборудованием и коммутационными узлами. Для связи оконечных установок с коммутационными узлами используются абонентские линии и каналы многоканальных систем. Коммутационные узлы соединены между собой пучками каналов. Перед узлами пучки расщепляются на отдельные каналы.

Расщепление допускает определенную свободу в организации сети. Например, при передаче по линиям связи могут применяться системы как частотного, так и временного разделения каналов (см. разд. 1.4.2), в узлах сети может устанавливаться аппаратура как пространственной, так и временной коммутации каналов (см. том 1, разд. 6.1.3, а также ). Такая свобода в выборе

Рис. 3.4. Асинхронная сеть с коммутацией каналов

Каналообразующей и коммутационной аппаратуры необходима, в частности, при организации телеграфной связи и передачи данных по общей сети, когда в первую очередь должно использоваться уже имеющееся оборудование телеграфной сети, например, системы тонального телеграфирования (см, разд. 1.4.2.2). Тогда по мере технических и экономических возможностей указанное оборудование постепенно может дополняться или заменяться более совершенным, основанным на новых разработках в области техники связи.

Как показано на рис. 3.4, соединительный тракт между вызывающей и вызываемой оконечными установками состоит из нескольких участков, которые через коммутационные узлы последовательно включены друг за другом. Так как каждый участок тракта передачи и каждый коммутационный узел вносят свою долю в общее искажение передаваемого сигнала данных, то передачу и коммутацию необходимо осуществлять с возможно меньшими искажениями.

Требование минимума искажений важно в первую очередь для неизохронных сигналов, которые принципиально не поддаются коррекции. Изохронные сигналы данных, напротив, могут корректироваться на каждом участке тракта передачи и в каждом коммутационном узле. В системах временного разделения, имеющих синхронные каналы или каналы с образованием знаковых циклов (см. разд. 1.4.2.3), коррекция осуществляется автоматически. В системах частотного разделения, которые допускают передачу с варьируемой скоростью, т. е. являются «прозрачными» (см. 1.4.2.2) для коррекции необходимо устанавливать дополнительные устройства. Однако из-за высоких затрат от этого обычно отказываются, вследствие чего в таких случаях передача и коммутация также должны осуществляться с возможно меньшими искажениями.

3.3.1.2. СИСТЕМЫ ПЕРЕДАЧИ С ВРК В АСИНХРОННЫХ СЕТЯХ С КОММУТАЦИЕЙ КАНАЛОВ

В асинхронной сети С коммутацией каналов каждая система передачи с временным разделением (ВРК) имеет свой собственный синхронизм, не зависимый от синхронизма других систем. Вследствие этого тактовые частоты систем с ВРК различны, т. е. соединительный тракт между абонентами состоит из участков с не совсем одинаковыми скоростями передачи.

В системах с временным разделением синхронных каналов (см. разд. 1.4.2.3), в которых каждому поступающему с ООД биту ставится в соответствие один бит в групповом потоке, из-за различия в скоростях передачи может возникнуть явление проскальзывания сигналов с выпадением битов или добавлением лишних. Это означает, что один из битов не передается далее, так как следующая система имеет слишком низкую скорость передачи, или, наоборот, какой-либо из битов оказывается переданным повторно, так как следующая система имеет слишком высокую скорость (рис. 3.5).

Рис. 3.5. Проскальзывание битов в асинхронной сети с коммутацией каналов

Поэтому в системах с ВРК, работающих в асинхронных сетях с коммутацией каналов, необходимо применять специальные способы выравнивания скоростей, при которых за счет исключения или добавления согласующих («пустых») битов в каждом отдельном канале данных достигается согласование со скоростью передачи по каналам соединительного тракта. Иначе говоря, необходимы системы с временным разделением, имеющие каналы с согласованием скоростей - стаффинговые каналы (см. разд. 1.4.2.3).

С явлением проскальзывания битов следует считаться также в случае применения систем временного разделения, имеющих

каналы с образованием знаковых циклов (см. разд. 1.4.2.3). Такие системы должны выявлять знаковые циклы и устранять расхождения скоростей между каналами данных путем укорочения или удлинения стопового элемента.

В системах временного разделения с «прозрачными» каналами (см. разд. 1.4.2.3), преобразующих сигналы ООД в передаваемую последовательность битов путем позиционно-временного кодирования, проблема проскальзывания битов не возникает. Действительно, в этом случае сигнал после каждого участка передачи характеризуется, в принципе, неменяющимися временными соотношениями и таким же передается далее. Конечно, чтобы искажения, возникающие из-за многократного кодирования, были не слишком велики, неизбежная при кодировании ошибка должна оставаться на достаточно низком уровне.

3.3.1.3. ОБОРУДОВАНИЕ ВРЕМЕННОЙ КОММУТАЦИИ КАНАЛОВ В АСИНХРОННЫХ СЕТЯХ

Если к коммутационным узлам асинхронной сети подключены системы с ВРК, имеющие стаффинговые каналы или каналы с образованием знаковых циклов, то в устройствах последовательной временной коммутации по битам (см. том 1, разд. 6.1.3.2) допустимы искажения сигналов данных, составляющие не более половины единичного интервала.

При использовании систем временного разделения с «прозрачными» каналами или систем частотного разделения каналов искажения, возникающие в процессе последовательной коммутации битов, должны быть весьма малыми, так как они входят в суммарное искажение. Хотя в случае изохронных сигналов данных между коммутационной аппаратурой и многоканальной системой передачи можно было бы установить корректор, в нем потребовалось бы осуществлять описанное в разд. 3.3.1.2. согласование скоростей и пришлось бы примириться со связанными с этим затратами.

При наличии стаффинговых каналов и каналов с образованием знаковых циклов может применяться коммутация групп битов, которая обеспечивает более высокую производительность (см. разд. 2. 1.1.1, пример 3, табл. 2.1).

3.3.1.4. СТРУКТУРА АСИНХРОННОЙ СЕТИ С КОММУТАЦИЕЙ КАНАЛОВ

Структура асинхронной сети с коммутацией каналов показана на рис. 3.6, где изображен нижний уровень сети - часть сети от абонентов до коммутационного узла. Абонентские стыки образуют границу между ООД и сетью передачи данных. В местах расположения абонентов находятся также приборы подключения

(ПП), которые обеспечивают сопряжение ООД с сетью (см. разд. 2.2.2). В тех случаях, когда ООД не управляет непосредстственно через цепи данных стыка процессами установления и разъединения соединений, вместо ПП устанавливаются вызывные приборы (ВП), содержащие необходимые для такого управления элементы (см. разд. 2.2.1).

Рис. 3.6. Структура асинхронной сети с коммутацией каналов:

1 - абонентские стыки; 2 - приборы подключения или вызывные приборы; 3 - абонентские линии; 4 - мультиплексоры; 5 - концентраторы; 6 - соединительные линии; 7 - коммутационный узел

Через абонентские линии ПП и ВП связаны с мультиплексорами или концентраторами, которые обычно размещаются в том же месте, где оборудование коммутационной станции телефонной сети. С помощью мультиплексора образуется пучок каналов, число которых равно числу абонентских линий. Концентратор, наоборот, собирает и уплотняет нагрузку абонентских линий, поэтому в пучке должно быть меньше каналов, чем имеется абонентских линий (см. разд. 2.1.1.2).

Коммутационные узлы сети передачи данных устанавливаются в местах расположения центральных коммутационных станций телефонной сети, а при высокой плотности абонентов - и в местах главных коммутационных станций этой сети. Коммутационные узлы верхнего уровня сети передачи данных связаны между собой разветвленной системой линий.

3.3.1.5. СИНХРОНИЗАЦИЯ ОКОНЕЧНОГО ОБОРУДОВАНИЯ ДАННЫХ

Согласно Рекомендациям МККТТ, касающимся абонентских стыков аппаратуры передачи данных при подключении к сети передачи данных синхронного оконечного оборудования (см. разд. 1.1.3), сеть должна обеспечивать подачу на каждое ООД тактового синхросигнала и взаимный синхронизм по элементам между передающим и принимающим ООД. В асинхронных сетях с коммутацией каналов, где внутренняя общесетевая тактовая синхронизация отсутствует, это требование выполняется за счет установки в ПП или ВП тех абонентов, которые имеют синхронное ООД, синхронных тактовых генераторов. Эти генераторы формируют тактовые сигналы передачи и после установления соединения выделяют из поступающих с противоположной стороны сигналов данных тактовые синхросигналы приема. Достигнутый таким способом синхронизм по элементам является индивидуальным для каждого соединения и сохраняется только на то время, пока данное соединение существует.

3.3.1.6. НЕЗАВИСИМОСТЬ ПЕРЕДАЧИ ОТ ПОСЛЕДОВАТЕЛЬНОСТИ БИТОВ В АСИНХРОННЫХ СЕТЯХ

Передача между синхронными оконечными установками не должна зависеть от вида передаваемой последовательности битов. В асинхронных сетях требуемая независимость может быть обеспечена с помощью скремблеров (см. разд. 2.2.1.1, 2.2.2.2) . Согласно этому методу сигналы, поступающие от ООД, в фазе передачи данных скремблируются (их биты перемешиваются) в ПП или ВП на передающей стороне. В ПП или ВП на приемной стороне сигналы восстанавливаются в их первоначальном виде с помощью дескремблера.

Перед началом передачи ПП или ВП включает скремблер и по истечении времени, которое необходимо дескремблеру на противоположной стороне для вхождения в синхронизм, подает на ООД сигнал, разрешающий передачу. С этого момента скремблер обеспечивает наличие в направляемом на коммутационный узел сигнале смен символов даже в том случае, когда ООД выдает длинную последовательность одинаковых символов. Это предотвращает возможность случайного разъединения против желания абонентов, так как длинная последовательность нулей, которая могла бы быть принята за сигнал отбоя, при этом не появляется.

Если же действительно нужно разъединить соединение, то ПП или ВП, управляемые через стык от ООД, отключают скремблер и посылают в линию связи длинную последовательность нулей. Если в течение определенного интервала времени коммутационный узел принимал только символы «0», подряд следующие друг за другом, то он разъединяет соединение.

Передачу можно сделать независимой от последовательности символов (битов) и другим способом: в последовательность битов, выдаваемую ООД, по определенному правилу с помощью ПП или ВП вводить дополнительные биты. Однако данный метод приводит к повышению скорости передачи (см. разд. 3.3.2.5) и поэтому в асинхронных сетях с коммутацией каналов ограничивает свободу в выборе типа АПД.

Вопросы по курсу

«СЕТИ ЭЛЕКТРОСВЯЗИ»

1. Основные понятия теории сетей связи и систем коммутации

2. Коммутация каналов, сообщений и пакетов +

3. Назначение систем коммутации в сетях связи

4. Диаграмма обмена сигналами в системах коммутации +

5. Централизованные системы коммутации +

6. Способы организации сетей связи +

7. Структура общегосударственной системы автоматизированной телефонной связи +

8. Типы городских сетей телефонной связи +

9. Организация спецслужб и система нумерации в сетях телефонной связи

10. Организация цифровых сетей связи +

11. Варианты модернизации аналоговых сетей телефонной связи +

12. Семиуровневая модель взаимодействия открытых систем +

13. Иерархия цифровых каналов +

14. Режимы доставки для широкополосных ЦСИС+

15. Обоснование концепции и модель обслуживания вызова в интеллектуальных сетях связи +

16. Архитектура интеллектуальной сети связи +

17. Концептуальная модель интеллектуальных сетей связи +

18. Способы повышения эффективности аналоговых абонентских линий +

19. Способы повышения эффективности цифровых абонентских линий +

20. Способы построения цифровой абонентской сети +

21. Цифровые системы передачи абонентских линий по технологии xDSL +

22. Способы кодирования линейных сигналов по технологии xDSL +

23. Структура сетей профессиональной связи

24. Структура сетей персонального вызова +

25. Структура сетей спутниковой связи +

26. Структура сотовых сетей связи +

27. Структура сетей беспроводной связи +

28. Классификация систем сигнализации

29. Абонентская сигнализация

30. Линейная и регистровая сигнализации

31. Общеканальная сигнализация

32. Назначение устройств синхронизации сети телефонной связи и

33. Основные методы синхронизации цифровой сети

34. Организация синхронизации в цифровых телефонных сетях

35. Функции эксплуатационного управления +

Коммутация каналов, сообщений и пакетов

Известны следующие типы систем коммутации:

С коммутацией каналов ;

С коммутацией сообщений ;

С коммутацией пакетов .


Коротко рассмотрим особенности организации указанных систем в сетях связи. Примерами сетей с коммутацией каналов являются телефонная сеть и сеть Телекс (абонентский телеграф). В этих системах сначала создается канал связи между двумя оконечными устройствами, а затем по нему осуществляется обмен информацией

Рис. 2.2. Фрагмент сети связи

Недостатком систем с коммутацией каналов является низкий коэффициент использования линий.

Примером сетей с коммутацией сообщений являются некоторые военные сети и сети речевой почты. В качестве оконечных устройств в этих системах могут использоваться ПЭВМ, которые в отличие от сети Телекс, не соединяются между собой напрямую. Сообщение, предназначенное для передачи из пункта А в другое оконечное устройство пункта В, последовательно запоминается в промежуточных пунктах С, D, Е, обрабатывается и передается в требуемый пункт В с некоторой задержкой во времени. При этом также последовательно освобождаются использованные промежуточные соединительные линии АС, СD, DЕ. Причина задержки сообщений заключается в том, что они ставятся в очередь для передачи по каждой последующей соединительной линии. В этих системах достигается значительно более высокое использование соединительных линий, чем в системах с коммутацией каналов. Однако электронные ящики имеют память большой емкости, что является недостатком сети с коммутацией сообщений.

Сети с коммутацией пакетов были разработаны в 80-х годах прошлого века. Примером такой сети может служить система IP–телефонии, в которой данные, полученные от терминала или ЭВМ, передаются в требуемый пункт назначения в виде коротких пакетов информации фиксированной длины. Такие системы занимают промежуточные положения между выше рассмотренными системами с точки зрения использования соединительных линий связи. Системы IP-телефонии обеспечивают в настоящее время наиболее экономически выгодный режим коммутации речевых сообщений. Однако при попадании отдельных пакетов в сети связи наблюдается значительное ухудшение качества передаваемых речевых сообщений, что является недостатком данных систем.

Диаграмма обмена сигналами в системах коммутации

Кроме канала для передачи информации между каждым терминалом и коммутационной станцией имеется также двухсторонний тракт для обмена сигналами управления. В большинстве реально существующих коммутационных систем для обоих цепей используется один и тот же физический канал.

Первым шагом в разработке любой коммутационной системы является рассмотрение совокупности сигналов управления для обмена служебной информацией между терминалом и коммутационной системой. Эта информация переносится в виде сигналов, закодированных определенным способом: в случае аналоговых телефонных систем – в амплитуде и частоте синусоидального напряжения, в цифровых системах передачи данных – в двоичных кодовых комбинациях.

Глобальные связи на основе сетей с коммутацией каналов

Выделенные линии представляют собой наиболее надежное средство соединения локальных сетей через глобальные каналы связи, так как вся пропускная способность такой линии всегда находится в распоряжении взаимодействующих сетей. Однако это и наиболее дорогой вид глобальных связей - при наличии N удаленных локальных сетей, которые интенсивно обмениваются данными друг с другом, нужно иметь Nx(N-l)/2 выделенных линий. Для снижения стоимости глобального транспорта применяют динамически коммутируемые каналы, стоимость которых разделяется между многими абонентами этих каналов.

Наиболее дешевыми оказываются услуги телефонных сетей, так как их коммутаторы оплачиваются большим количеством абонентов, пользующихся телефонными услугами, а не только абонентами, которые объединяют свои локальные сети.

Телефонные сети делятся на аналоговые и цифровые в зависимости от способа мультиплексирования абонентских и магистральных каналов. Более точно, цифровыми называются сети, в которых на абонентских окончаниях информация представлена в, цифровом виде и в которых используются цифровые методы мультиплексирования и коммутации, а аналоговыми - сети, которые принимают данные от абонентов аналоговой формы, то есть от классических аналоговых телефонных аппаратов, а мультиплексирование и коммутацию осуществляют как аналоговыми методами, так и цифровыми. В последние годы происходил достаточно интенсивный процесс замены коммутаторов телефонных сетей на цифровые коммутаторы, которые работают на основе технологии TDM. Однако такая сеть по-прежнему останется аналоговой телефонной сетью, даже если все коммутаторы будут работать по технологии TDM, обрабатывая данные в цифровой форме, если абонентские окончания у нее останутся аналоговыми, а аналого-цифровое преобразование выполняется на ближней к абоненту АТС сети. Новая технология модемов V.90 смогла использовать факт существования большого количества сетей, в которых основная часть коммутаторов являются цифровыми.

К телефонным сетям с цифровыми абонентскими окончаниями относятся так называемые службы Switched 56 (коммутируемые каналы 56 Кбит/с) и цифровые сети с интегральными услугами ISDN (Intergrated Services Digital Network). Службы Switched 56 появились в ряде западных стран в результате предоставления конечным абонентам цифрового окончания, совместимого со стандартами линий Т1. Эта технология не стала международным стандартом, и сегодня она вытеснена технологией ISDN, которая такой статус имеет.

Сети ISDN рассчитаны не только на передачу голоса, но и компьютерных данных, в том числе и с помощью коммутации пакетов, за счет чего они получили название сетей с интегральными услугами. Однако основным режимом работы сетей ISDN остается режим коммутации каналов, а служба коммутации пакетов обладает слишком низкой по современным меркам скоростью - обычно до 9600 бит/с. Поэтому технология ISDN будет рассмотрена в данном разделе, посвященном сетям с коммутацией каналов. Новое поколение сетей с интеграцией услуг, названное B-ISDN (от broadband - широкополосные), основано уже целиком на технике коммутации пакетов (точнее, ячеек технологии АТМ), поэтому эта технология будет рассмотрена в разделе, посвященном сетям с коммутацией пакетов.

Выделенные линии представляют собой наиболее надежное средство соединения локальных сетей через глобальные каналы связи, так как вся пропускная способность такой линии всегда находится в распоряжении взаимодействующих сетей. Однако это и наиболее дорогой вид глобальных связей - при наличии N удаленных локальных сетей, которые интенсивно обмениваются данными друг с другом, нужно иметь Nx(N-l)/2 выделенных линий. Для снижения стоимости глобального транспорта применяют динамически коммутируемые каналы, стоимость которых разделяется между многими абонентами этих каналов.

Наиболее дешевыми оказываются услуги телефонных сетей, так как их коммутаторы оплачиваются большим количеством абонентов, пользующихся телефонными услугами, а не только абонентами, которые объединяют свои локальные сети.

Телефонные сети делятся на аналоговые и цифровые в зависимости от способа мультиплексирования абонентских и магистральных каналов. Более точно, цифровыми называются сети, в которых на абонентских окончаниях информация представлена в, цифровом виде и в которых используются цифровые методы мультиплексирования и коммутации, а аналоговыми - сети, которые принимают данные от абонентов аналоговой формы, то есть от классических аналоговых телефонных аппаратов, а мультиплексирование и коммутацию осуществляют как аналоговыми методами, так и цифровыми. В последние годы происходил достаточно интенсивный процесс замены коммутаторов телефонных сетей на цифровые коммутаторы, которые работают на основе технологии TDM. Однако такая сеть по-прежнему останется аналоговой телефонной сетью, даже если все коммутаторы будут работать по технологии TDM, обрабатывая данные в цифровой форме, если абонентские окончания у нее останутся аналоговыми, а аналого-цифровое преобразование выполняется на ближней к абоненту АТС сети. Новая технология модемов V.90 смогла использовать факт существования большого количества сетей, в которых основная часть коммутаторов являются цифровыми.

К телефонным сетям с цифровыми абонентскими окончаниями относятся так называемые службы Switched 56 (коммутируемые каналы 56 Кбит/с) и цифровые сети с интегральными услугами ISDN (Intergrated Services Digital Network). Службы Switched 56 появились в ряде западных стран в результате предоставления конечным абонентам цифрового окончания, совместимого со стандартами линий Т1. Эта технология не стала международным стандартом, и сегодня она вытеснена технологией ISDN, которая такой статус имеет.

Сети ISDN рассчитаны не только на передачу голоса, но и компьютерных данных, в том числе и с помощью коммутации пакетов, за счет чего они получили название сетей с интегральными услугами. Однако основным режимом работы сетей ISDN остается режим коммутации каналов, а служба коммутации пакетов обладает слишком низкой по современным меркам скоростью - обычно до 9600 бит/с. Поэтому технология ISDN будет рассмотрена в данном разделе, посвященном сетям с коммутацией каналов. Новое поколение сетей с интеграцией услуг, названное B-ISDN (от broadband - широкополосные), основано уже целиком на технике коммутации пакетов (точнее, ячеек технологии АТМ), поэтому эта технология будет рассмотрена в разделе, посвященном сетям с коммутацией пакетов.

Пока географическая распространенность аналоговых сетей значительно превосходит распространенность цифровых, особенно в нашей стране, но это отставание с каждым годом сокращается.

Сети с коммутацией каналов обладают несколькими важными общими свойствами независимо от того, какой тип мультиплексирования в них используется.

Сети с динамической коммутацией требуют предварительной процедуры установления соединения между абонентами. Для этого в сеть передается адрес вызываемого абонента, который проходит через коммутаторы и настраивает их на последующую передачу данных. Запрос на установление соединения маршрутизируется от одного коммутатора к другому и в конце концов достигает вызываемого абонента. Сеть может отказать в установлении соединения, если емкость требуемого выходного канала уже исчерпана. Для FDM-коммутатора емкость выходного канала равна количеству частотных полос этого канала, а для TDM-коммутатора - количеству тайм-слотов, на которые делится цикл работы канала. Сеть отказывает в соединении также в том случае, если запрашиваемый абонент уже установил соединение с кем-нибудь другим. В первом случае говорят, что занят коммутатор, а во втором - абонент. Возможность отказа в соединении является недостатком метода коммутации каналов.

Если соединение может быть установлено, то ему выделяется фиксированная полоса частот в FDM-сетях или же фиксированная пропускная способность в TDM-сетях. Эти величины остаются неизменными в течение всего периода соединения. Гарантированная пропускная способность сети после установления соединения является важным свойством, необходимым для таких приложений, как передача голоса, изображения или управления объектами в реальном масштабе времени. Однако динамически изменять пропускную способность канала по требованию абонента сети с коммутацией каналов не могут, что делает их неэффективными в условиях пульсирующего трафика.

Недостатком сетей с коммутацией каналов является невозможность применения пользовательской аппаратуры, работающей с разной скоростью. Отдельные части составного канала работают с одинаковой скоростью, так как сети с коммутацией каналов не буферизуют данные пользователей.

Сети с коммутацией каналов хорошо приспособлены для коммутации потоков данных постоянной скорости, когда единицей коммутации является не отдельный байт или пакет данных, а долговременный синхронный поток данных между двумя абонентами. Для таких потоков сети с коммутацией каналов добавляют минимум служебной информации для маршрутизации данных через сеть, используя временную позицию каждого бита потока в качестве его адреса назначения в коммутаторах сети.

Обеспечение дуплексного режима работы на основе технологий FDM, TDM и WDM

В зависимости от направления возможной передачи данных способы передачи данных по линии связи делятся на следующие типы:

o симплексный - передача осуществляется по линии связи только в одном направлении;

o полудуплексный - передача ведется в обоих направлениях, но попеременно во времени. Примером такой передачи служит технология Ethernet;

o дуплексный - передача ведется одновременно в двух направлениях.

Дуплексный режим - наиболее универсальный и производительный способ работы канала. Самым простым вариантом организации дуплексного режима является использование двух независимых физических каналов (двух пар проводников или двух световодов) в кабеле, каждый из которых работает в симплексном режиме, то есть передает данные в одном направлении. Именно такая идея лежит в основе реализации дуплексного режима работы во многих сетевых технологиях, например Fast Ethernet или АТМ.

Иногда такое простое решение оказывается недоступным или неэффективным. Чаще всего это происходит в тех случаях, когда для дуплексного обмена данными имеется всего один физический канал, а организация второго связана с большими затратами. Например, при обмене данными с помощью модемов через телефонную сеть у пользователя имеется только один физический канал связи с АТС - двухпроводная линия, и приобретать второй вряд ли целесообразно. В таких случаях дуплексный режим работы организуется на основе разделения канала на два логических подканала с помощью техники FDM или TDM.

Модемы для организации дуплексного режима работы на двухпроводной линии применяют технику FDM. Модемы, использующие частотную модуляцию, работают на четырех частотах: две частоты - для кодирования единиц и нулей в одном направлении, а остальные две частоты - для передачи данных в обратном направлении.

При цифровом кодировании дуплексный режим на двухпроводной линии организуется с помощью техники TDM. Часть тайм-слотов используется для передачи данных в одном направлении, а часть - для передачи в другом направлении. Обычно тайм-слоты противоположных направлений чередуются, из-за чего такой способ иногда называют «пинг-понговой» передачей. TDM-разделение линии характерно, например, для цифровых сетей с интеграцией услуг (ISDN) на абонентских двухпроводных окончаниях.

В волоконно-оптических кабелях при использовании одного оптического волокна для организации дуплексного режима работы применяется передача данных в одном направлении с помощью светового пучка одной длины волны, а в обратном - другой длины волны. Такая техника относится к методу FDM, однако для оптических кабелей она получила название разделения по длине волны (Wave Division Multiplexing, WDM). WDM применяется и для повышения скорости передачи данных в одном направлении, обычно используя от 2 до 16 каналов.

Коммутация пакетов

Принципы коммутации пакетов

Коммутация пакетов - это техника коммутации абонентов, которая была специально разработана для эффективной передачи компьютерного трафика. Эксперименты по созданию первых компьютерных сетей на основе техники коммутации каналов показали, что этот вид коммутации не позволяет достичь высокой общей пропускной способности сети. Суть проблемы заключается в пульсирующем характере трафика, который генерируют типичные сетевые приложения. Например, при обращении к удаленному файловому серверу пользователь сначала просматривает содержимое каталога этого сервера, что порождает передачу небольшого объема данных. Затем он открывает требуемый файл в текстовом редакторе, и эта операция может создать достаточно интенсивный обмен данными, особенно если файл содержит объемные графические включения. После отображения нескольких страниц файла пользователь некоторое время работает с ними локально, что вообще не требует передачи данных по сети, а затем возвращает модифицированные копии страниц на сервер - и это снова порождает интенсивную передачу данных по сети.

Коэффициент пульсации трафика отдельного пользователя сети, равный отношению средней интенсивности обмена данными к максимально возможной, может составлять 1:50 или 1:100. Если для описанной сессии организовать коммутацию канала между компьютером пользователя и сервером, то большую часть времени канал будет простаивать. В то же время коммутационные возможности сети будут использоваться - часть тайм-слотов или частотных полос коммутаторов будет занята и недоступна другим пользователям сети.

При коммутации пакетов все передаваемые пользователем сети сообщения разбиваются в исходном узле на сравнительно небольшие части, называемые пакетами. Напомним, что сообщением называется логически завершенная порция данных - запрос на передачу файла, ответ на этот запрос, содержащий весь файл, и т. п. Сообщения могут иметь произвольную длину, от нескольких байт до многих мегабайт. Напротив, пакеты обычно тоже могут иметь переменную длину, но в узких пределах, например от 46 до 1500 байт. Каждый пакет снабжается заголовком, в котором указывается адресная информация, необходимая для доставки пакета узлу назначения, а также номер пакета, который будет использоваться узлом назначения для сборки сообщения (рис. 2.29). Пакеты транспортируются в сети как независимые информационные блоки. Коммутаторы сети принимают пакеты от конечных узлов и на основании адресной информации передают их друг другу, а в конечном итоге - узлу назначения.

Рис. 2.29. Разбиение сообщения на пакеты

Коммутаторы пакетной сети отличаются от коммутаторов каналов тем, что они имеют внутреннюю буферную память для временного хранения пакетов, если выходной порт коммутатора в момент принятия пакета занят передачей другого пакета (рис. 2.30). В этом случае пакет находится некоторое время в очереди пакетов в буферной памяти выходного порта, а когда до него дойдет очередь, то он передается следующему коммутатору. Такая схема передачи данных позволяет сглаживать пульсации трафика на магистральных связях между коммутаторами и тем самым использовать их наиболее эффективным образом для повышения пропускной способности сети в целом.

Рис. 2.30. Сглаживание пульсаций трафика в сети с коммутацией пакетов

Действительно, для пары абонентов наиболее эффективным было бы предоставление им в единоличное пользование скоммутированного канала связи, как это делается в сетях с коммутацией каналов. При этом способе время взаимодействия этой пары абонентов было бы минимальным, так как данные без задержек передавались бы от одного абонента другому. Простои канала во время пауз передачи абонентов не интересуют, для них важно быстрее решить свою собственную задачу. Сеть с коммутацией пакетов замедляет процесс взаимодействия конкретной пары абонентов, так как их пакеты могут ожидать в коммутаторах, пока по магистральным связям передаются другие пакеты, пришедшие в коммутатор ранее.

Тем не менее общий объем передаваемых сетью компьютерных данных в единицу времени при технике коммутации пакетов будет выше, чем при технике коммутации каналов. Это происходит потому, что пульсации отдельных абонентов в соответствии с законом больших чисел распределяются во времени. Поэтому коммутаторы постоянно и достаточно равномерно загружены работой, если число обслуживаемых ими абонентов действительно велико. На рис. 2.30 показано, что трафик, поступающий от конечных узлов на коммутаторы, очень неравномерно распределен во времени. Однако коммутаторы более высокого уровня иерархии, которые обслуживают соединения между коммутаторами нижнего уровня, загружены более равномерно, и поток пакетов в магистральных каналах, соединяющих коммутаторы верхнего уровня, имеет почти максимальный коэффициент использования.

Более высокая эффективность сетей с коммутацией пакетов по сравнению с сетями с коммутацией каналов (при равной пропускной способности каналов связи) была доказана в 60-е годы как экспериментально, так и с помощью имитационного моделирования. Здесь уместна аналогия с мультипрограммными операционными системами. Каждая отдельная программа в такой системе выполняется дольше, чем в однопрограммной системе, когда программе выделяется все процессорное время, пока она не завершит свое выполнение. Однако общее число программ, выполняемых за единицу времени, в мультипрограммной системе больше, чем в однопрограммной.



Похожие публикации