Телевизоры. Приставки. Проекторы и аксессуары. Технологии. Цифровое ТВ

Чувствительный микрофон для компьютера. Чертежи, конструкции, идеи Микрофонный усилитель для наушников схема

Очень простые и качественные схемы микрофонных усилителей с низковольтным питанием для любых радиолюбительских конструкций

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “

В статье приведены простые схемы микрофонных усилителей , которые найдут применение и для компьютера, и в караоке, и как просто микрофонные усилители для различных радиолюбительских устройств .

Немного о применяемых микрофонах.
Чаще всего радиолюбители применяют в своих устройствах два типа микрофонов – динамический, или электретный.
Отечественное обозначение:
- МД – микрофон динамический
- МКЭ – микрофон конденсаторный, электретный
Диапазон воспроизводимых частот у них примерно одинаковый, в среднем – 50-16000 Герц.
Чувствительность у динамических микрофонов – 1-2 мв/Па, у электретных – 1-4 мв/Па.
Для работы электретных микрофонов требуется дополнительный источник питания – 1,5-4,5 вольт (питание также нужно для встроенного в капсюль полевого транзистора, который служит для согласования высокого выходного сопротивления микрофона с низким входным сопротивлением усилителя).
Капсюль динамического микрофона обладает низким выходным сопротивлением и напряжением. Поэтому, все без исключения динамические микрофоны снабжаются согласующим повышающим трансформатором, встроенным в их корпус.
Чаще всего в радиолюбительских схемах присутствует узел питания электретных микрофонов, но если нет, то вот типовая схема включения электретного микрофона:

Сопротивление резистора R1 зависит от питающего напряжения. Примерно можно его выбирать так:
– при питающем напряжении 1,5 – 3 вольта – как на схеме, 2,2 кОм
– при 4,5 вольта – 4,7 кОм
– более 4,5 вольт – около 10 кОм
Типовая схема питания и подключения электретного микрофона к микрофонному усилителю:
– при низковольтном питании:


- при питании напряжением более 4,5 вольт можно применить стабилитрон на соответствующее напряжение:

Я думаю, что с микрофонами более-менее понятно.
Теперь переходим к микрофонным усилителям.
В статье приведены несколько схем на транзисторах и микросхемах.
Напряжение питания всех транзисторных схем в примерах – 3 вольта. Если у вас более высокое напряжение питания, то в схемы надо добавить . Ток потребления усилителей – около 1 мА.

Первая схема.
Микрофонный усилитель на двух транзисторах разной проводимости.
Усилитель не требует подбора элементов схемы.
Коэффициент усиления составляет не менее 150-200 во всей полосе частот.
Схема усилителя:


В схеме, кроме указанных транзисторов, можно применить КТ3102 и КТ3107 с любым буквенным индексом, допустима замена на КТ315 и КТ361, но работа усилителя может ухудшиться. Также можно применить и их зарубежные аналоги.
Такую же замену транзисторов можно производить и в остальных схемах микрофонных усилителей.
Печатная плата и монтажная схема усилителя на двух транзисторах:



Вторая схема.
Микрофонный усилитель на трех транзисторах.
Коэффициент усиления – 300-400.
Схема усилителя:


Особенность этого усилителя – коррекция частотной характеристики во втором каскаде, которая достигается включение параллельно резистору R7 цепочки С4 и R5. На низких частотах сопротивление конденсатора С4 велико, и резистор R5 практически не влияет на усиление каскада. На высоких же частотах за счет малого сопротивления того же конденсатора параллельно R7 подключается R5. Сопротивление в цепи эмиттера уменьшается, что приводит к увеличению коэффициента усиления каскада.
Печатная плата и монтажная схема усилителя на трех транзисторах:


Третья схема.
Микрофонный усилитель на трех транзисторах разной проводимости.
Коэффициент усиления – до 1000.
Схема усилителя:


В случае необходимости усиление можно снизить увеличением номинала резистора R3 (при R3 равном 1 кОм, коэффициент усиления составляет – 100).
Для нормальной работы усилителя необходимо, чтобы постоянное напряжение на эмиттере третьего транзистора равнялось +1,4 вольта, которое устанавливается подбором номинала резистора R1.
Печатная плата и монтажная схема усилителя на трех транзисторах разной проводимости:

Четвертая схема.
Микрофонный усилитель на ИМС типа К538УН3Б
С помощью такой микросхемы можно собрать очень простой микрофонный усилитель с коэффициентом усиления – 2000-4000 (при напряжении питания равном 6 вольт, при напряжении питания 3 вольта, коэффициент усиления снизиться до 500-1000).
Схема усилителя:

Пятая схема.
Микрофонный усилитель на два канала (стерео) на ИМС TDA7050.
Микросхема имеет два канала с коэффициентом усиления около 1000 в полосе частот от 20 Гц до 20 кГц.
Напряжение питания может составлять от 1,6 вольта до 6 вольт.
Схема усилителя:

В этой статье описано, как, с применением операционного усилителя, самостоятельно изготовить простой усилитель сигнала электретного микрофона и подключить его к компьютеру. Зачем это нужно? Ну как же, это очень даже полезная штука. С помощью такого устройства можно, например, изготовить направленный микрофон и разговаривать с другом, находящимся на значительном расстоянии от вас, или можно даже разговаривать с тем же другом прямо через стену.

Сразу оговорюсь, ситуация, когда вы просто слушаете, — о чём это там болтает ваш друг, находясь за сто метров от вас, или подслушиваете его через ту же стену, грозит не только осложнением отношений с другом, но и неприятностями с законом, поскольку такими вещами у нас в стране заниматься категорически запрещено (если конечно у вас нет на это санкции суда). Короче, я вас предупредил.

Итак, собственно, вернёмся к усилителю. Представленная здесь схема является самой что ни на есть и рассчитывается по самой что ни на есть . Есть только один маленький нюанс.

Поскольку мы используем однополярное питание, то, естественно, усилить отрицательные сигналы мы не можем. Чтобы решить эту проблему нулевой уровень был искусственно сдвинут вверх на половину напряжения питания и входной сигнал мы рассматриваем относительно этого нового нулевого уровня. Как мы это сделали? Да очень просто. Взяли, да и подали на неинвертирующий вход сигнал с делителя, который делит напряжение питания пополам. В дальнейшем, после усиления полезного сигнала, постоянная составляющая убирается конденсатором С5.

Коэффициент усиления схемы определяется формулой: K=R4/R3 . Для возможности плавно регулировать коэффициент усиления схемы, — в качестве резистора R4 нужно использовать подстроечный резистор.

Подключается это устройство к разъёму Line-in звуковой карты компьютера.

Элементы схемы :

R1, R2 — резисторы на 47 кОм. В принципе, пойдут любые, лишь бы ток через делитель был раз в 100..200 больше входного тока ОУ. Ну, естественно, слишком большой ток делителя снижает время жизни батареек.

R3 — резистор на 1 кОм. Тоже в общем-то любой, лишь бы коэффициент усиления нужный получить.

R4 — подстроечный резистор на 100 кОм.

R5, R6 — резисторы, на 4,3 и 47 кОм, соответственно.

C1,С2 — фильтры по питанию ОУ, керамика 0,1 мкФ и электролит 100 мкФ / 6,3В, соответственно.

С3, С5 — разделительные конденсаторы, керамика 10 мкФ (полно на платах старых винчестеров)

С4 — керамический конденсатор 4,7 нФ (подойдёт любой от 1 до 10 нФ)

Mic — любой электретный микрофон (можно взять от старого сотового телефона, выдрать из дешёвых наушников с микрофоном или просто купить в любом магазине электроники). Китайские таблетки, такие, как на фото, стоят в магазине всего 10 рублей.

ОУ — в принципе, должен подойти любой операционный усилитель, способный работать от 3-х вольт однополярного питания. Я использовал LM358.

Uп — литиевая таблетка 3В (такая же, как на материнской плате, батарейкодержатель, кстати, можно оттуда же выпаять).

С указанными элементами устройство потребляет мизерный ток, — менее 1 мА.

Вот, в общем-то, и весь усилитель. На этом мы с электрической частью заканчиваем и переходим к акустической части. Усилитель, который мы изготовили будет просто усиливать сигнал от микрофона, с какой бы стороны этот сигнал к микрофону не пришёл. Как же сделать наш микрофон направленным? Самое простое, что можно сделать, — это приделать к нему рупор. В качестве рупора можно использовать всё, что угодно: пластиковый стакан, стеклянную банку с дыркой, деревянный ящик без одной стенки, даже просто свёрнутый из бумаги кулёк. Для более надёжного экранирования звуков с ненужных вам направлений можно обмотать рупор шарфом.

Пример готового устройства :

Как с этим устройством работать? Алгоритм работы такой: выкручиваете ручку резистора R4 на минимум, вставляете батарейку, подключаете к компьютеру (вход Line-in), направляете на то место, откуда вы хотите услышать звук (или прислоняете ваш рупор к стене) и начинаете плавно крутить ручку резистора R4 (увеличивать его сопротивление) до появления звука.

Микшер компьютера должен быть настроен так, чтобы звук со входа Line-in поступал в динамики и/или в программу звукозаписи (если хотите записывать).

Если вы случайно переборщите с усилением, то это сразу станет слышно по характерному резкому звону из динамиков (в этом случае коэффициент усиления нужно немножко убавить).

Скачать плату усилителя (DipTrace 2.0, разводка под SMD-компоненты)

Подробности Создано 21.10.2014 07:27

Основополагающий компонент, без которого не было ни одного современного электронного устройства - транзистор. Чтобы понять как работает этот полупроводниковый прибор, соберем простейший усилитель на одном транзисторе.

Так как целью было ознакомление с работой транзистора, а не сборка конечного устройства для использования в быту, я не стал выбирать и специально покупать какой-то определенный транзистор, а взял тот, который оказался под рукой - П307В. Скачал из интернета так называемый даташит(datasheet) для П307 из которого узнал что данный тип транзистора имеет n-p-n структуру, низкочастотный, маломощный и подходит для применения в усилителях.

Как известно из школьной программы физики, транзистор - это, образно выражаясь, слоеный пирог, состоящий из трех слоев полупроводникового материала. Полупроводник - это такой материал, который отличается сильной зависимостью своей проводимости от концентрации примесей и других факторов. Самый распространенный полупроводник - это кремний.

В зависимости от вводимой в полупроводник примеси, он становится p-типа или n-типа. Транзисторы могут иметь n-p-n или p-n-p структуру. Центральный слой полупроводника называется базой, а два крайних - эмиттер и коллектор. На схемах они обозначаются следующим образом:

Принцип работы транзистора сводится к тому что малыми токами, подаваемыми на базу, можно управлять большими токами, протекающими между эмиттером и коллектором.

Транзисторы n-p-n типа управляются (активируются) положительным напряжением, которое прикладывается к базе транзистора относительно эмиттера.

Транзисторы p-n-p типа управляются отрицательным напряжением, которое создается на базе относительно эмиттера.

У электронщиков есть одна крылатая фраза: "Никто не умирает так тихо и незаметно как транзистор". Если на выводы транзистора подать слишком большой ток, то он сразу же выйдет из строя. Допустимые токи для разных транзисторов можно узнать в даташите, для маломощных обычно не более 20мА.

Проверить транзистор можно при помощи обычного мультиметра. Включаем мультиметр в режим измерения сопротивления в диапозоне тысяч Ом, подсоединяем красный щуп к базе, а общий - черный щуп, попеременно, к эмиттеру, потом к коллектору, прибор должен показывать сопротивление, в моем случае порядка 300 Ом. Далее подсоединяем общий щуп к базе, а красный щуп попеременно к эмиттеру, потом к коллектору, прибор не должен показывать сопротивление, как будто это диэлектрик. Если все-же показывает сопротивление в обоих направлениях, то p-n переход пробит. То есть от базы к эмиттеру и от базы к коллектору ток должен проходить только в одном направлении. Переходы база - эмиттер и база - коллектор при проверке транзистора можно сравнить с двумя диодами, соединенными между собой. Транзисторы p-n-p структуры проверяются аналогично, но направления проводимости будут противоположными.

Кроме транзистора понадобились микрофон, динамик, переменный резистор и источник питания.

динамик у меня оказался под рукой этот, но можно взять любой, даже обычные наушники-капельки

переменный резистор на 20кОм, постоянные резисторы на 10кОм и 300Ом

источник питания - два аккумулятора по 3.7v, соединенные последовательно, что дает в сумме 7.4v

Все манипуляции с электронными компонентами очень удобно делать на макетной плате, не требующей пайки. Для включения детали в схему нужно просто воткнуть ее в отверстия платы. Макетную плату дешевле всего заказать на Алиэкспрессе, я покупал вот эту макетную плату в комплекте с usb адаптором питания и набором перемычек



Для начала я решил проверить работу транзистора в режиме ключа. Резистор для предохранения от превышения тока на светодиоде - 200 Ом, хотя источник питания не достаточно мощный чтобы вывести светодиод из строя. Таким образом эмиттерно-коллекторная цепь собрана, но светодиод не светится. для того чтобы ток потек, нужно приложить небольшое положительное сопротивление к базе. Для этого я взял два проводника, один подсоединил к плюсу, а второй - к базе, и замкнул их пальцем, так чтобы они не касались друг-друга. То есть использовал сопротивление небольшого участка кожи пальца. Сопротивление пальца довольно большое и ток сильно уменьшился, но даже этого небольшого тока на базе транзистора хватило чтобы приоткрыть переход эмиттер-коллектор и светодиод начал светиться.

Чтобы из простого электронного ключа на одном транзисторе сделать усилитель микрофона, необходимо вместо светодиода подключить динамик, а к базе - резистор и микрофон.

Тут я столкнулся с двумя трудностями, во-первых я не знал с каким сопротивлением на базе будет нужный ток. Именно от этого так называемого "тока смещения на базе транзистора" будет зависеть усиление, то есть громкость в динамике. Поэтому я решил взять переменное сопротивление. Путем подбора оказалось что усилитель работал с сопротивлением в диапазоне от 11кОм до 33кОм, за этими пределами в динамике не было слышно ничего. Наибольшая громкость достигалась примерно при 14кОм. Это значение зависит от входного сигнала, в данном случае от применяемого микрофона.

Данный усилитель будет работать, если динамик подключать в разрыв между эмиттером и минусом так и между плюсом и коллектором.

Хотя этот усилитель делался только в целях ознакомления с работой транзистора, он вполне работоспособен и ему можно найти применение. Звуки перед микрофоном отчетливо слышны в динамике.

Рассмотренные в тематической подборке конструкции микрофонных усилителей используют только недорогие и доступные радиокомпоненты, а также неплохие технические характеристики.


Благодаря сочетанию именно таких биполярных транзисторов, отпала необходимость в переходной емкости между обоими каскадами, а также гарантируется стабильная работа усилителя по величине постоянного тока, даже при коллебаниях питающего напряжения или при замене транзисторов на новые.

Этой конструкция не нужен подбор элементов, так как использованы транзисторы, с коэффициентом передаваемого тока выше 50. Это означает, то что в этой конструкции можно применять, без подбора, транзисторы типа КТ3102 или КТ3107 с любыми буквенными индексами. Хороший результат можно получить и при применение зарубежных аналогов ВС307А, ВС307Б, ВС308А, ВС308В в качестве первого. Схема обеспечивает коэффициент усиления не ниже 150-200 в частотном диапазоне 50 Гц - 20 кГц.

Использование биполярных транзисторов одного типа проводимости позволило упростить процедуру их подбора, т.к прямой контакт между каскадами стабилизирует функционирование всех трех транзисторов по величине постоянного тока.

Border="0">

Особенность такой схемы заключается в том, что можно корректировать частотные характеристик второго транзисторного каскада благодаря наличию частотно-зависимой отрицательной обратной связи. Для ее реализации осуществляют параллельное подключение к сопротивлению R7 цепочки из конденсатора С4 и резистор R5. Показатель реактивного сопротивления емкости С4 на низких частотах достаточно высокий, а, поэтому, R5 не влияет на усилительный каскад. На высоких частотах параллельно R7 подключается C5. А рост коэффициента усиления осуществляется в результате снижения сопротивления эмиттерной цепи.


Еще одна особенность этой конструкции заключается в том, что сигнал на его выход следует через эмиттерный повторитель на последнем транзисторе. Такое сочетание снижает выходное сопротивление, а также уменьшает и влияние длины соединительного кабеля на качество работы усилителя в целом.

Предлагаемое схемотехническое решение позволяет использовать меньше радиокомпонентов, а коэффициент усиления повысить до 1000, благодаря наличию отрицательной ОС по величине напряжения в среднем каскаде. Это отлично стабилизирует усиление, а также увеличивает рост входного сопротивления схемы. В случае необходимости коэффициент усиление снижается за счет роста сопротивления R3. Например, используя R3 = 1 кОм, коэффициент усиления (K u ) падал до 100.

Border="0">

Учитывая зависимость режимов функционирования транзисторов по постоянному току от показателей первого и второго транзистора. Для нормальной работы устройства величина постоянного напряжения на эмиттерном переходе последнего транзистора должна быть около 1,4 В. Это контрольное напряжение настраивается подпором резистора R1.


Микрофон ДЭМШ-1А, это электромагнитный, дифференциальный и шумозащищенный микрофон, используемый для работы в радиосвязи. Микрофонный капсюль ДЭМШ-1А это симметричная электромагнитная систему с диафрагмой, открытая с двух сторон. Поэтому при условии близкого и несимметричного расположении микрофона относительно источника звука он выдает высокий уровень выходного сигнала и при этом значительно снижая разные шумы, имеющиеся в месте передачи.

Для предварительного усилениязвуковой частоты микрофона и задания частотной характеристики, а также согласования выходного сопротивления микрофона с последующими каскадами используется эта схема:


Все каскады микрофонного усилителя собраны по схеме с непосредственной связью. Это снизило количество электролитических конденсаторов и добавило немного надежности конструкции. Усиление по напряжению осуществляют два транзистора VT 1 и VT2. На третьем выполнен эмиттерный повторитель, с помощью которого добиваются низкого выходного сопротивление. Для термостабилизации режимов работы транзисторов усилителя, напряжение смещения на базу первого из них подается с эмиттерного сопротивления второго через R4. Допустим, что под воздействием, каких-то негативных факторов, ростет и ток транзистора VT1, это приведет к снижению уровня напряжения на его коллекторе и на базе VT2. Это снизит ток коллектора VT2 и падения напряжения на эмиттерном сопротивление R6, что приведет приведет к снижению напряжения на базе VT1 и уменьшению его коллекторного тока. Т.о задается стабилизация режимов работы микрофонного усилителя. Емкость С1 - конденсатор фильтра напряжения питания, С2 - разделительный. Через емкость С3 напряжение сигнала отрицательной ОС, снимаемое с R6, в противофазе поступает на базу VT1. Это гарантирует завал частотной характеристики в области высоких частот и исключает возбуждение на ВЧ. Емкость С4 так же, как и С2 - разделительная. Настройка усилителя по постоянному току происходит изменением номинала резистора R4. Усилитель работает в режиме класса А. Номинал резистора R4 должна быть такой, чтобы с ростом входного сигнала от генератора НЧ, ограничение амплитуды положительных и отрицательных полуволн синусоиды происходило одновременно.

Микрофонные усилители своими руками.

Усилитель для компьютерного микрофона с фантомным питанием.

Завел я себе на компьютере такую программку как Skype. Но вот одна незадача: микрофон нужно держать около самого рта, что бы собеседник мог тебя хорошо слышать. Я решил, что не хватает чувствительности микрофона. И решил сделать усилитель усилитель.

Поиск в интернете дал десятки схем усилителей. Но всем им требовался отдельный источник питания. Мне же хотелось сделать усилитель без дополнительного источника, с питанием от самой звуковой карты. Что бы не нужно было менять батарейки или тянуть дополнительные провода.
Прежде чем бороться с врагом, нужно знать его в лицо. Поэтому я накопал информации в интернете об устройстве микрофона: https://oldoctober.com/ru/microphone. Статья рассказывает, как сделать компьютерный микрофон своими руками. Заодно я позаимствовал и саму идею: незачем ломать готовое устройство для своих экспериментов, если можно сделать самому. Краткий пересказ статьи сводится к тому, что компьютерный микрофон - это электретный капсюль. Электретный капсюль - это, с электрической точки зрения, полевой транзистор с открытым истоком. Этот транзистор запитывается от звуковой карты через резистор, который одновременно является и преобразователем сигнального тока в напряжение. Два уточнения к статье. Во-первых, нет в капсюле резистора в стоковой цепи, сам видел, когда разобрал. Во-вторых, соединение резистора и конденсатора выполняется в кабеле, а не в звуковой карте. То есть один вывод служит для питания микрофона, а второй - для приема сигнала. То есть получается примерно вот такая схема

Здесь левая часть рисунка - это электретный капсюль (микрофон), правая - звуковая карта компьютера.
Во многих источниках пишут, что питание микрофона осуществляется от напряжения 5В. Это неверно. В моей звуковой карте это напряжение было 2,65В. При замыкании вывода питания микрофона на землю ток составил около 1,5мА. То есть резистор имеет сопротивление около 1,7кОм. Вот от такого источника и требовалось питать усилитель.
В результате экспериментов с microcap родилась вот такая схема.

Через резисторы R1, R2 осуществляется питание капсюля. Для предотвращения отрицательной обратной связи на частотах сигнала используется конденсатор C1. На капсюль подается напряжение питания равное падению напряжения на p-n переходе. Сигнал с капсюля выделяется на резисторе R1 и подается на базу транзистора VT1 для усиления. Транзистор включен по схеме с общим эмиттером с нагрузкой на резисторы R2 и резистор в звуковой карте. Отрицательная обратная связь по постоянному току через R1, R2 обеспечивает относительное постоянство тока через транзистор.

Вся конструкция была собрана навесным монтажом прямо на микрофонном капсюле. По сравнению с микрофоном без усилителя сигнал увеличился примерно раз в 10 (22дБ).

Вся конструкция была обмотана сначала бумагой для изоляции, а потом фольгой для экранирования. Фольга имеет контакт с корпусом капсюля.

Микрофонный усилитель с однопроводным питанием.

Микрофон, с размещенным в корпусе предусилителем, требуют для подключения к устройству проводов питания (помимо экранированного сигнального провода). С конструктивной точки зрения это не очень удобно. Число соединительных проводов можно уменьшить, подавая напряжение питания через тот же провод, по которому передается сигнал, т. е. центральный проводник кабеля. Именно такой способ подачи питания применен в предлагаемом вниманию читателей усилителе. Его принципиальная схема приведена на рисунке.

Усилитель рассчитан на работу от электретного микрофона любого типа (например, МКЭ-3). Питание на микрофон подается через резистор R1. Звуковой сигнал с микрофона подводится к базе транзистора VT1 через разделительный конденсатор С1. Необходимое смещение на базе этого транзистора (около 0, 5 В) задается делителем напряжения R2R3. Усиленное напряжение звуковой частоты выделяется на нагрузочном резистор R5 и поступает далее на базу транзистора VT2, входящего в составной эмиттерный повторитель, собранный на транзисторах VT2 и VT3. Эмиттер последнего соединен с верхним контактом разъема ХР1 (выходом усилителя), к которому подключен центральный проводник соединительного экранированного кабеля, оплетка которого соединена с общим проводом. Заметим, что наличие на выходе предусилителя эмиттерного повторителя заметно снижает уровень наводок на микрофонный вход.

Около входного разъема устройства, к которому подключается микрофон, смонтированы еще две детали: нагрузочный резистор R6, через который подается питание, и разделительный конденсатор СЗ, служащий для отделения звукового сигнала от постоянной составляющей напряжения питания.
Примененное в данном усилителе схемотехническое решение обеспечивает автоматическую установку и стабилизацию режима его работы. Рассмотрим, как это происходит. После включения питания напряжение на верхнем выводе разъема ХР1 возрастает примерно до 6 В. При этом напряжение на базе транзистора VT1 достигает порога его открывания 0, 5 В и через транзистор начинает протекать ток. Падение напряжения, возникающее в этом случае на резисторе R5, заставляет открыться транзистор составного эмиттерного повторителя. В результате общий ток усилителя возрастает, а вместе с ним увеличивается и падение напряжения на резисторе R6, после чего режим стабилизируется.

Поскольку коэффициент усиления составного эмиттерного повторителя по току (он равен произведению коэффициентов усиления по току транзисторов VT2 и VT3) может достигать нескольких тысяч, стабилизация режима получается очень жесткой. Усилитель в целом работает подобно стабилитрону, фиксирующему выходное напряжение на уровне 6 В независимо от напряжения питания. Тем не менее при использовании источника питания с другим напряжением надо подобрать резисторы делителя R2R3 так, чтобы напряжение на верхнем контакте разъема ХР1 было равно половине напряжения питания. Любопытно, что режим практически нельзя изменить, регулируя сопротивление нагрузочного резистора R5. Падение напряжения на нем всегда равно суммарному напряжению открывания транзисторов составного эмиттерного повторителя (около 1 В), а изменения его сопротивления приводят только к изменению тока через транзистор VT1. То же относится и к резистору R6.

Еще интереснее работа усилителя в режиме усиления переменного тока. Напряжение звуковой частоты с нижнего вывода резистора R5 передается эмиттерным повторителем с очень небольшим ослаблением на верхний вывод - выход усилителя. При этом ток через резистор постоянен и почти не подвержен колебаниям со звуковой частотой. Иными словами, единственный усилительный каскад оказывается нагруженным на генератор тока, т.е. на очень большое сопротивление. Входное сопротивление повторителя тоже очень велико, и в результате коэффициент усиления оказывается очень большим. При негромком разговоре перед микрофоном амплитуда выходного напряжения может достигать нескольких вольт. Цепочка R4C2 не пропускает переменную составляющую сигнала звуковой частоты к цепи питания микрофона и делителя напряжения.

Однокаскадный усилитель совершенно не склонен к самовозбуждению, поэтому и расположение деталей на плате особого значения не имеет, желательно только вход и выход разместить с разных концов платы.

Налаживание сводится к подбору резисторов делителя R2R3 до получения на выходе половины напряжения питания. Полезно еще подобрать и резистор R1, ориентируясь по наилучшему звучанию сигнала, снимаемого с микрофона. Если входное сопротивление радиоаппарата, с которым используется данный усилитель, менее 100 кОм, емкость конденсатора СЗ следует соответственно увеличить.

Подключение динамического микрофона в микрофонный вход звуковой карты компьютера.

Микрофонный вход звуковой карты предназначен для подключения электретного микрофона. Назначение контактов разъёма микрофонного входа показано на Рис. 1. Звуковой сигнал поступает на вход звуковой карты через контакт TIP. Питание электретного микрофона подаётся через резистор R на контакт RING. Контакты TIP и RING соединяются вместе в микрофонном кабеле.


Рис. 1

Практически все мультимедийные микрофоны стоимостью 2-4$ годятся только для распознавания речи, телефонии и т. п. Хотя данные микрофоны, как правило обладают высокой чувствительностью, они имеют высокий уровень нелинейных искажений, недостаточную перегрузочную способность, а так же - круговую диаграмму направленности (то есть одинаково хорошо воспринимают сигналы с любой стороны). Поэтому для записи вокала в домашних условиях необходимо использовать остронаправленный динамический микрофон, позволяющий свести к минимуму посторонние шумы от вентилятора системного блока и других источников.

Динамический микрофон можно подключить непосредственно на микрофонный вход звуковой карты. Сигнальный провод микрофонного кабеля нужно припаять к контакту TIP, экран - к контакту GND, контакт RING нужно оставить свободным. Если у микрофона два сигнальных контакта - HOT и COLD, то контакт HOT подать на контакт TIP, а контакт COLD соединить с GND. Поскольку чувствительность динамического микрофона низкая, по сравнению с электретным, достаточный уровень записи получается только при расположении микрофона на расстоянии 3-5 сантиметров от губ исполнителя. Это не всегда допустимо, поскольку микрофоны некоторых типов будут "заплёвываться", несмотря на встроенную ветрозащиту. Такие микрофоны необходимо располагать дальше от исполнителя, а для получения достаточного уровня записи - воспользоваться предусилителем. Схема простейшего предусилителя с питанием от разъёма микрофонного входа показана на Рис. 2.


Рис. 2

Данная схема у меня прилично работает при следующих номиналах: R1,R3 - 100 кОм, R2 - 470 кОм, C1,C2 - 47мкФ, VT1 - кт3102ам (можно заменить на кт368, кт312, кт315).
В основу схемы положен классический транзисторный каскад с общим эмиттером. Нагрузкой каскада служит резистор R звуковой карты (Рис. 1). Коэффициент усиления зависит от параметров транзистора VT1, величины резистора обратной связи R2 и величины резистора R звуковой карты. Конденсатор C1 необходим для развязки по постоянному току. Резистор R1 служит для устранения щелчков при подключении микрофона "на ходу", при желании можно его исключить.

При более детальном рассмотрении оказалось, что на контакте TIP микрофонного входа моего SB LIVE 5.1 присутствует постоянное напряжение около 2 В. Исследовать причину, и характерно ли это только для моего экземпляра звуковой карты или для всех, возможности не было. Но абсолютно точно, что работоспособность схемы практически не изменяется при исключении элементов C2, R3.

Достоинством данной схемы является простота. К недостаткам следует отнести большие нелинейные искажения - около 1%(1 кГц) при 1 мВ на входе. Уменьшить нелинейные искажения до 0,1% можно с помощью дополнительного резистора 100 Ом, включаемого между эмиттером транзистора VT1 и шиной GND, при этом коэффициент усиления уменьшается с 40 дБ до 30 дБ. Изменения показаны на Рис. 3.


Рис. 3

Более высокие параметры можно получить, используя внешний микрофонный усилитель с автономным питанием, подключаемый к линейному входу звуковой карты. Например - собранный по схеме с симметричным входом.

Микрофонный усилитель своими руками.

Наверное, у многих из вас, возникала необходимость записи звука на компьютере, например, при озвучивании роликов или создании клипов.Применение китайского недорогого ширпотреба абсолютно нежелательно, во-первых,из-за довольно низкой чувствительности, во-вторых, качество звукозаписи
получается *грязным*, иногда, становится неузнаваем даже свой собственный голос.
Высокие частоты, имеют значительный и неоправданный завал, ну и долговечность их, оставляет желать лучшего.
Высококачественный же микрофон, - увы, нам с вами не по карману!

Но, выход есть! У многих имеются старые, еще советские динамические микрофоны, например МД-52 либо, ему подобные. Да и при их отсутствии, эти экземпляры можно купить, за *сущие копейки*.Подключать подобные микрофоны, непосредственно к звуковой карте напрямую не пытайтесь, - слишком мало напряжение ЗЧ на выходе. Поэтому, применим простейший микрофонный усилитель, на широко распространенной микросхеме К538УН3, стоимость ее, менее 50руб. Но мы, использовали старую микросхему, выпаянную из древнего кассетного магнитофона. Непосредственно, сама микросхема, включена по типовой,распространенной схеме включения, с максимальным коэффициентом усиления. Питается усилитель, непосредственно от компьютера, напряжение питания - 12 В, хотя работоспособность сохраняется и при - 5В, в этом случае, питание можно взять с разъема USB.

Микрофонный усилитель. Схема.

Электролитические конденсаторы – любые, на напряжение 16В. Величину ёмкости конденсаторов, возможно изменять в небольших пределах. Устройство, можно собрать, используя простой, навесной монтаж.

Никакой настройки, усилитель не требует и не нуждается в экранировании конструкции. Но, использование экранированных кабелей – желательно и не слишком длинных. Испытания образцов, показали относительно низкий уровень собственных шумов, довольно высокую чувствительность и очень даже приличное качество звука, даже на встроенных компьютерных звуковых картах, типаАС97. Динамический диапазон – около 40 ДБ. Для записи звука на компьютер, использовали программу Sound Forge.

Ну и еще несколько схем к статьям в довесок.

Чистого Вам звука!!!



Похожие публикации