Телевизоры. Приставки. Проекторы и аксессуары. Технологии. Цифровое ТВ

Тенденции развития радиоприемных устройств. Цифровая подстанция. Обзор мировых тенденций развития

Появление ПК справедливо считают грациозной научно-технической революцией, сравнимой по масштабам с изобретением электричества, радио. К моменту рождения ПК вычислительная техника уже существовала четверть века. Старые ЭВМ были отделены от массового пользователя, с ними работали специалисты (электронщики, программисты, операторы). Рождение ПК сделало ЭВМ массовым инструментом. Облик ЭВМ кардинально изменился: она стала дружественной (т.е. способной вести культурный диалог с человеком на визуально комфортном экране). В настоящее время в мире используются сотни миллионов ПК как на производстве, так и в повседневной жизни.

Информатика и её практические результаты становятся важнейшим двигателем научно-технического прогресса и развития человеческого общества. Её технической базой являются средства обработки и передачи информации. Скорость их развития поразительна, в истории человечества этому бурно развивающемуся процессу нет аналога. Можно утверждать, что история вычислительной техники уникальна, прежде всего, фантастическими темпами развития аппаратных и программных средств. В последнее время идет активный рост слияния компьютера, средств связи и бытовых приборов в единый набор. Будут создаваться новые системы, размещенные на одной интегральной схеме и включающие кроме самого процессора и его окружения, еще и программное обеспечение.

Уже сейчас на смену универсальным компьютерам приходят новые устройства - смартфоны, решающие конкретный спектр задач своего владельца. Развивается система карманных компьютеров.

Характерной чертой компьютеров пятого поколения обязано быть внедрение искусственного интеллекта и естественных языков общения. Предполагается, что вычислительные машины пятого поколения будут просто управляемы. Пользователь сумеет голосом подавать машине команды.

Предполагается, что XXI век будет веком наибольшего использования достижений информатики в экономике, политике, науке, образовании, медицине, быту, военном деле.

Главной тенденцией развития вычислительной техники в настоящее время является дальнейшее расширение сфер внедрения ЭВМ и, как следствие, переход от отдельных машин к их системам - вычислительным системам и комплексам разнообразных конфигураций с широким спектром функциональных возможностей и черт.

Более перспективные, создаваемые на базе персональных ЭВМ, территориально распределенные многомашинные вычислительные системы. Вычислительные сети - ориентируются не столько на вычислительную обработку информации, сколько на коммуникационные информационные сервисы: электронную почту, системы телеконференций и информационно-справочные системы. Специалисты считают, что в начале XXI в. в цивилизованных странах произойдет смена основной информационной среды.

В последние годы, при разработке новых ЭВМ большее внимание уделялось сверхмощным компьютерам - суперЭВМ и миниатюрным, и сверхминиатюрные ПК. Ведутся поисковые работы по созданию ЭВМ 6-го поколения, базирующихся на распределенной нейронной архитектуре, нейрокомпьютеров. В частности, в нейрокомпьютерах могут употребляться уже имеющиеся специализированные сетевые МП - транспьютеры - микропроцессоры сети со встроенными средствами связи.

Примерная характеристика компьютеров шестого поколения.

В современной технике радиоприема достигнут серьезный прогресс, обусловленный интенсивным внедрением цифровой микросхемотехники. Имеющиеся микросхемы дают возможность разрабатывать приемники с высокой чувствительностью, лучшей избирательностью по зеркальному каналу, меньшими частотными и нелинейными искажениями, а также позволяют решить ряд проблем новыми путями. В частности, сигнальные микропроцессоры обеспечивают оптимальное качество приема в условиях помех, управление автопоиском, электронную память десятков радиостанций, коммутацию программ, работу таймера, включающего и выключающего приемник по заданной программе. Используются цифровая и обзорная настройки.

Для дистанционного управления приемниками в пределах одного помещения применяют ультразвуковые и инфракрасные линии связи. Сигналы управления с пульта дистанционного управления поступают на кодирующее устройство, в котором генерируется последовательность импульсов, поступающая на фотодиод, где осуществляется ИКМ инфракрасного излучения. Промодулированное излучение поступает на приемник (фототранзистор), затем на усилитель и декодирующее устройство и, наконец, на устройство управления.

Несомненные достоинства сулит использование систем цифрового радиовещания. Цифровая система передачи звука уже давно работает в каналах спутниковой связи и спутникового радиовещания, а также используется для цифровой звукозаписи музыкальных композиций.

Цифровое вещание обеспечивает неискаженное воспроизведение звука: полосу воспроизводимых частот 5-20 000 Гц, коэффициент нелинейных искажений менее 90 дБ, практически полное отсутствие внешних помех, а также позволяет осуществить стереофоническое вещание. Недостатком цифрового вещания является широкая полоса частот порядка 8 МГц, занимаемая одной радиостанцией, что определяет диапазоны несущих частот цифрового вещания. Цифровое вещание позволяет просто реализовать вывод информации на дисплей, режим повтора, запоминание сообщений и т.д.

Упрощенная структурная схема современного цифрового приемника показана на рис. 7.20. В этой схеме усилительный тракт (УТ) выполнен на аналоговых элементах и производит предварительную частотную фильтрацию принятого сигнала, усиление и преобразование его частоты.

Рис. 7.20.

АЦП преобразует аналоговый сигнал в цифровой код, который подается на собственно цифровой приемник. Последний представляет собой сигнальный процессор (СП), осуществляющий цифровую обработку принятого сигнала по заданному алгоритму. Такой алгоритм включает задачу поиска сигнала по диапазону, дополнительного преобразования частоты, фильтрацию, детектирование и т.д. Если необходим сигнал в аналоговой форме, то на выходе приемника вводится ЦАП. Перестройка приемника по каналам производится с помощью синтезатора частоты (СЧ).

Сейчас все большее внимание уделяется использованию в бытовой радиоаппаратуре систем управления и оповещения человеческим голосом. Команды оператора подтверждаются синтезированным человеческим голосом. Сигнал управления превращается в цифровую форму и поступает в микропроцессор управления.

Системы распознавания голоса станут частью приемников, которые будут выполнять команды определенного человека. После исполнения команды микропроцессор вырабатывает сигнал ответа, который поступает в синтезатор человеческой речи, и громкоговоритель воспроизводит ответ.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Современные тенденции развития радиопередающей техники

Радиопередающие устройства (РПдУ) применяются в сферах телекоммуникации, телевизионного и радиовещания, радиолокации, радионавигации. Стремительное развитие микроэлектроники, аналоговой и цифровой микросхемотехники, микропроцессорной и компьютерной техники оказывает существенное влияние на развитие радиопередающей техники как с точки зрения резкого увеличения функциональных возможностей, так и с точки зрения улучшения ее эксплуатационных показателей. Это достигается за счет использования новых принципов построения структурных схем передатчиков и схемотехнической реализации отдельных их узлов, реализующих цифровые способы формирования, обработки и преобразования колебаний и сигналов, имеющих различные частоты и уровни мощности.

Радиопередатчики, в которых используются цифровые способы формирования, обработки и преобразования колебаний и сигналов, будем далее называть цифровыми радиопередающими устройствами (ЦРПдУ).

Рассмотрим современные требования к РПдУ, которые ставят проблемы, не решаемые в принципе методами аналоговой схемотехники, что вызывает необходимость применения цифровых технологий в РПдУ.

В области телекоммуникаций и вещания можно выделить следующие основные непрерывно возрастающие требования к системам передачи информации, элементами которых являются РПдУ:

Обеспечение помехоустойчивости в перегруженном радиоэфире;

Повышение пропускной способности каналов;

Экономичность использования частотного ресурса при многоканальной связи;

Улучшение качества сигналов и электромагнитной совместимости.

Стремление удовлетворить этим требованиям приводит к появлению новых стандартов связи и вещания. Среди уже известных GSM, DECT, SmarTrunk II, TETRA, DRM и др.

Основным направлением развития систем связи является обеспечение множественного доступа, при котором частотный ресурс совместно и одновременно используется несколькими абонентами. К технологиям множественного доступа относятся TDMA, FDMA, CDMA и их комбинации. При этом повышают требования и к качеству связи, т.е. помехоустойчивости, объему передаваемой информации, защищенности информации и идентификации пользователя и пр. Это приводит к необходимости использования сложных видов модуляции, кодирования информации, непрерывной и быстрой перестройки рабочей частоты, синхронизации циклов работы передатчика, приемника и базовой станции, а также обеспечению высокой стабильности частоты и высокой точности амплитудной и фазовой модуляции при рабочих частотах, измеряемых гигагерцами. Что касается систем вещания , здесь основным требованием является повышение качества сигнала на стороне абонента, что опять же приводит к повышению объема передаваемой информации в связи с переходом на цифровые стандарты вещания. Крайне важна также стабильность во времени параметров таких радиопередатчиков - частоты, модуляции. Очевидно, что аналоговая схемотехника с такими задачами справиться не в состоянии, и формирование сигналов передатчиков необходимо осуществлять цифровыми методами.

Современную радиопередающую технику невозможно представить без встроенных средств программного управления режимами работы каскадов, самодиагностики, автокалибровки, авторегулирования и защиты от аварийных ситуаций, в том числе автоматического резервирования. Такие функции в передатчиках осуществляют специализированные микроконтроллеры, иногда совмещающие функции цифрового формирования передаваемых сигналов. Часто используется дистанционное управление режимами работы при помощи удаленного компьютера через специальный цифровой интерфейс. Любой современный передатчик или трансивер обеспечивает определенный уровень сервиса для пользователя , включающий цифровое управление передатчиком (например, с клавиатуры) и индикацию режимов работы в графической и текстовой форме на экране дисплея. Очевидно, что здесь не обойтись без микропроцессорных систем управления передатчиком, определяющих его важнейшие параметры.

Производство передатчиков такого уровня сложности было бы экономически невыгодно в случае их аналогового исполнения. Именно средства цифровой микросхемотехники, позволяющие заменить целые блоки обычных передатчиков, дают возможность существенно улучшить массогабаритные показатели передатчиков (вспомните сотовые телефоны), достичь повторяемости параметров, высокой технологичности и простоты в их изготовлении и настройке.

Очевидно, что появление и развитие цифровых радиопередающих устройств явилось неизбежным и необходимым этапом истории радиотехники и телекоммуникаций, позволив решить многие насущные задачи, недоступные аналоговой схемотехнике.

В качестве примера рассмотрим вещательный цифровой радиопередатчик HARRIS PLATINUM Z (рис.1.1), обладающий следующими основными особенностями (информация на www.pirs.ru):

А) Полностью цифровой FM-возбудитель HARRIS DIGITTM с встроенным стереогенератором с цифровой обработкой сигнала. Будучи первым в мире полностью цифровым FМ-возбудителем, HARRIS DIGITTM принимает звуковые частоты в стандарте AES/EBU в цифровом виде и генерирует максимально модулированную несущую радиочастоту полностью в цифровом режиме, благодаря чему уровень помех и искажений ниже, чем в любом другом FM-передатчике (16-битовое цифровое качество ЗЧ).

Б) Система быстрого пуска обеспечивает достижение полной мощности по всем показателям в течение 5 секунд после включения.

В) Контроллер на микропроцессорах позволяет осуществлять полный контроль, диагностику и вывод на дисплей. Включает в себя встроенную логику и команды для переключения между основными/дополнительными HARRIS DIGITTM возбудителями и предварительным усилителем мощности (ПУМ).

Г) Широкополосная схема позволяет отказаться от настройки в диапазоне от 87 до 108 МГц (при варианте N+1). Изменение частоты можно произвести вручную переключателями менее чем за 5 минут, и менее чем за 0,5 сек с помощью дополнительного внешнего контроллера.

Рис.1.1

Еще одним примером цифрового радиопередатчика может послужить устройство для беспроводной передачи данных BLUETOOTH (информация www.webmarket.ru), который будет подробнее рассмотрен в п.3.1 (рис.1.2 и табл.1.1).

Рис.1.2.

Табл.1.1. Краткие спецификации Bluetooth

Итак, выделим основные области применения цифровых технологий формирования и обработки сигналов в радиопередающих устройствах.

1. Формирование и преобразование аналоговых и цифровых информационных НЧ сигналов, в т.ч. сопряжение компьютера с радиопередатчиком (групповые сигналы, кодирование, преобразование аналоговых сигналов в цифровые или наоборот).

2. Цифровые методы модуляции ВЧ сигналов.

3. Синтез частот и управление частотой.

4. Цифровой перенос спектра сигналов.

5. Цифровые методы усиления мощности ВЧ сигналов.

6. Цифровые системы автоматического регулирования и управления передатчиками, индикации и контроля.

Следующие разделы содержат более подробную информацию о каждой из названных областей применения цифровой техники в радиопередатчиках.

Список литературы

1. Цифровые радиоприемные системы / Под ред. М.И. Жодзишского. М.: Радио и связь, 1990. 208 с.

2. Повышение эффективности мощных радиопередающих устройств / Под ред. А.Д.Артыма. М.: Радио и связь, 1987. 175 с.

3. Гольденберг Л.М., Матюшкин Б.Д., Поляк М.Н. Цифровая обработка сигналов: Учеб. пособие для вузов. М.: Радио и связь, 1990. 256 с.

4. Семенов Б.Ю. Современный тюнер своими руками. М.: СОЛОН_Р. 2001. 352 с.

Подобные документы

    История развития и становления радиопередающих устройств, основные проблемы в их работе. Обобщенная структурная схема современного радиопередатчика. Классификация радиопередатчиков по разным признакам, диапазон частот как одна из характеристик приборов.

    реферат , добавлен 29.04.2011

    Общие сведения о Bluetooth’е, что это такое. Типы соединения, передача данных, структура пакета. Особенности работы Bluetooth, описание его протоколов, уровня безопасности. Конфигурация профиля, описание основных конкурентов. Спецификации Bluetooth.

    контрольная работа , добавлен 01.12.2010

    Характеристики радиопередающих устройств, их основные функции: генерация электромагнитных колебаний и их модуляции в соответствии с передаваемым сообщением. Проектирование функциональной схемы радиопередатчика и определение его некоторых параметров.

    реферат , добавлен 26.04.2012

    Что такое ТСР? Принцип построения транкинговых сетей. Услуги сетей тракинговой связи. Технология Bluetooth - как способ беспроводной передачи информации. Некоторые аспекты практического применения технологии Bluetooth. Анализ беспроводных технологий.

    курсовая работа , добавлен 24.12.2006

    Задачи применения аналого-цифровых преобразователей в радиопередатчиках. Особенности цифро-аналоговых преобразователей (ЦАП) для работы в низкочастотных трактах, системах управления и специализированных быстродействующих ЦАП с высоким разрешением.

    курсовая работа , добавлен 15.01.2011

    Основные характеристики видео. Видеостандарты. Форматы записи. Методы сжатия. Современные мобильные видеоформаты. Программы, необходимые для воспроизведения видео. Современные видеокамеры. Носители цифрового видео. Спутниковое телевидение.

    реферат , добавлен 25.01.2007

    Что такое Bluetooth? Существующие методы решения отдельных задач. "Частотный конфликт". Конкуренты. Практический пример решения. Bluetooth для мобильной связи. Bluetooth-устройства. Декабрьский бум. Кто делает Bluetooth-чипы? Харольд Голубой Зуб.

    реферат , добавлен 28.11.2005

    Расчёт передатчика и цепи согласования. Расчёт структурной схемы и каскада радиопередатчика, величин элементов и энергетических показателей кварцевого автогенератора. Нестабильность кварцевого автогенератора и проектирование радиопередающих устройств.

    курсовая работа , добавлен 03.12.2010

    Современные виды электросвязи. Описание систем для передачи непрерывных сообщений, звукового вещания, телеграфной связи. Особенности использования витой пары, кабельных линий, оптического волокна. Назначение технологии Bluetooth и транковой связи.

    реферат , добавлен 23.10.2014

    Основные тенденции развития рынка данных дистанционного зондирования Земли в последнее десятилетие. Современные космические ДДЗ высокого разрешения. Спутники сверхвысокого разрешения. Перспективные картографические комплексы Cartosat-1 и Cartosat-2.

Современные ЦФС должны быть универсальными, принимать в обработку всевозможные данные с различных устройств, предоставляя на выходе широкий спектр продуктов для картографии, ГИС, систем 3D-моделирования. Важной характеристикой ЦФС является оперативная поддержка новых видов сенсоров, прежде всего космических

А.Ю. Сечин (ЗАО «Ракурс»)

Развитие цифровой фотограмметрии прежде всего определяется уровнем развития техники. Быстродействие современных компьютеров позволяет оперативно решать задачи, выполнение которых некогда требовало значительных затрат времени. Совершенствуются сенсоры систем дистанционного зондирования, появляются новые цифровые камеры, приборы и устройства, улучшаются характеристики существующих. Увеличивается возможное число снимков в блоках для совместного уравнивания. Растут требования к выходным продуктам цифровых фотограмметрических станций (ЦФС), все чаще пользователи запрашивают не только традиционные ортофотопланы и векторные данные для ГИС, но и полноценные трехмерные модели как результат обработки данных ДЗЗ. На взгляд автора, современные ЦФС должны быть универсальными, принимать в обработку всевозможные данные с различных устройств, предоставляя на выходе широкий спектр продуктов для картографии, ГИС, систем 3D-моделирования. Важной характеристикой ЦФС является оперативная поддержка новых видов сенсоров, прежде всего космических.

В последние годы стало отчетливо заметно стремление к использованию цифровых аэросъемочных камер, позволяющих получать цифровые изображения непосредственно в полете, вместо пленочных. Этапы проявки и сканирования пленок скоро уйдут в прошлое. При аэрофотосъемке используются как привычные кадровые системы (например, DMC фирмы Intergraph Corp. (США) или UltraСamX фирмы Vexcel Imaging (США), входящей в состав корпорации Microsoft), так и сенсоры, основанные на ПЗС-линейках (например, ADS-40 фирмы Lieca Geosystems, Швейцария), имеющие непривычные для фотограмметристов геометрию кадра и математическую модель. Современные цифровые камеры обладают большой глубиной цвета (более 8 бит на канал), увеличивается число одновременно регистрируемых каналов к традиционным красному, синему, зеленому добавляются инфракрасные (ближняя и дальняя зоны) каналы. Большая глубина цвета позволяет различать детали, ранее недоступные для восприятия (например, в тени). Современная ЦФС должна на входе, выходе и в процессе обработки изображений поддерживать произвольное число каналов с любой глубиной цвета. При работе с данными спутниковых сенсоров ЦФС должна иметь возможность обрабатывать изображения как обобщенными методами (модель сенсора отсутствует или известна в грубом приближении), так и с учетом сопутствующих метаданных, а при наличии строгой модели использовать ее для точной обработки.


Рис. 1. Современные цифровые камеры

Фотограмметрическая обработка снимков подразумевает максимально возможную, субпиксельную, точность измерений. Поэтому растровые данные, поступающие на вход ЦФС, не должны подвергаться обработке, снижающей их точность. Допустим минимальный набор алгоритмов предобработки растровых данных, например, паншарпенинг. Выходные растровые данные (ортофото) могут подвергаться различным методам постобработки для улучшения визуальных свойств. Наличие в составе ЦФС модулей постобработки, сохраняющих геопривязку изображений, является несомненным достоинством фотограмметрической системы.

При аэрофотосъемке с борта самолета все чаще кроме цифровых камер используют интегральные навигационные комплексы системы GPS/IMU, позволяющие измерять элементы внешнего ориентирования снимков в полете, а также лазерные сканеры, которые обеспечивают формирование модели рельефа местности без стереообработки снимков. Точность подобных устройств постоянно возрастает. В настоящее время при наличии на борту системы GPS/IMU и данных о рельефе местности, полученных с помощью технологии лазерного сканирования, можно строить ортофотопланы с точностью 2xGSD (GSD Ground Sample Distance размер пиксела на местности, определяет параметры съемки цифровой камерой, подобие масштаба аэрозалета для аналоговых камер) и лучше без традиционного уравнивания аэрофотоснимков и построения рельефа фотограмметрическими методами.

Если для достижения максимальной точности при обработке блока снимков требуется его уравнивание, в современных ЦФС все чаще используются методы автоматического измерения связующих точек, результаты которого, как правило, требуют последующего контроля со стороны оператора. В ближайшее время можно ожидать появления более надежных алгоритмов автоматической расстановки точек и их отбраковки при уравнивании, не требующих вмешательства человека.

Если методы построения цифровых моделей рельефа в ЦФС новых поколений автоматизированы и со стороны оператора требуют только простейших операций по фильтрации и, иногда, проведению дополнительных орографических линий, то процесс векторизации строений, дорог, участков и т. п. пока еще выполняется в ручном режиме. Работы по его автоматизации ведутся давно, автор надеется, что в ближайшие годы появятся надежные системы, облегчающие этот тяжелый труд.

С точки зрения вычислений, наиболее трудоемким процессом в ЦФС является построение ортофотопланов. Для больших (несколько тысяч снимков) блоков время, требуемое для ортофототрансформирования на одном компьютере, может составлять десятки и сотни часов. С развитием многопроцессорных компьютерных систем и быстрых локальных вычислительных сетей процесс ортофототрансформирования может быть распределен по компьютерам локальной сети и процессорам (ядрам) компьютеров. Хорошая масштабируемость и возможность параллельной обработки значительных объемов данных в локальной сети являются признаками современной ЦФС. С увеличением размеров обрабатываемых блоков и объемов данных возрастает роль централизованных серверов хранения данных. Возможно, в ближайшее время появятся системы с возможностью распределенного хранения снимков и сопутствующей информации, обеспечивающие автоматическое оптимальное размещение ресурсов хранения.

Безусловно, современная ЦФС должна «понимать» широкий спектр растровых, векторных и иных данных разных форматов. При этом выходные результаты фотограмметрической обработки должны быть доступны в форматах, принимаемых различными ГИС и картографическими системами. В последнее время наметилась тенденция к использованию и визуализации трехмерных данных, получаемых с помощью ЦФС, прежде всего для городской местности. Такого рода данные интересны муниципальным службам, телекоммуникационным компаниям, отделениям МЧС, военным и разработчикам навигационных систем, в последующем они могут быть использованы для построения реалистичных трехмерных моделей городов.

Отметим, что 3D-модели нужны и для построения в ЦФС так называемых «истинных» ортофотопланов (true orthophoto), которые, несмотря на высокую трудоемкость изготовления и вычислительную сложность, получают все большее распространение.

Важной характеристикой ЦФС является поддержка современных аппаратных средств стереовизуализации. В первых фотограмметрических станциях для стереонаблюдений использовались оптико-механические устройства (специальные насадки на монитор) или анаглифические очки. В последующем появились системы, выводящие изображения на монитор через строку (interlace) и подразумевающие использование специальных поляризационных очков. Эти системы иногда еще применяются, хотя характеризуются невысокой точностью, суженным полем обзора, а также низким качеством изображения. Как правило, анаглифический и чересстрочный методы вызывают у операторов повышенную утомляемость глаз, и они, на наш взгляд, могут быть использованы только для демонстрации возможностей ЦФС и первоначального обучения работе с программной системой. Современные способы вывода стереоизображений основаны на профессиональных видеокартах, аппаратно поддерживающих стереорежим, и программном интерфейсе (API) OpenGL. При этом могут использоваться различные стереоустройства: специальные мониторы, основанные на экранах 2хLCD и поляризационном стекле, стереопроекторы. Поддержка новых аппаратных решений для стереовывода в этом случае не требует адаптации ЦФС.

Традиционно на аналитических приборах для перемещения стереомаркера использовались специальные штурвалы. Операторы, только осваивающие ЦФС, считают управление с помощью таких штурвалов неудобным и предпочитают многокнопочные манипуляторы типа «мышь», специально предназначенные для работы в стереорежиме. Для эффективной работы желательно, чтобы ЦФС поддерживала работу и со штурвалами, и со специальными манипуляторами.

Несколько в стороне от традиционных фотограмметрических систем находятся системы обработки радарных снимков. С появлением на рынке данных сенсоров космического базирования с высокой разрешающей способностью (TerraSAR-X, COSMO-Skymed, RADARSAT-2) роль последних существенно возросла. Эти системы, называемые радарграмметрическими, позволяют строить цифровые модели местности с точностью по высоте в пределах первых метров, создавать ортоизображения (в том числе с использованием моделей местности, получаемых по радиолокационным снимкам), а также высокоточные карты смещений земной поверхности (с миллиметровой точностью при интерферометрической обработке).

Подводя итоги, можно отметить, что современная ЦФС должна «понимать» максимально возможное число форматов растровых, векторных и других данных, обеспечивать высокий уровень автоматизации и производительности, поддерживать современные компьютерные технологии. Наличие в составе ЦФС модулей пред- и постобработки изображений, средств работы с 3D-моделями, полученными фотограмметрическими методами, должно стать неотъемлемой частью таких систем.



Похожие публикации