Телевизоры. Приставки. Проекторы и аксессуары. Технологии. Цифровое ТВ

Максимальное значение отвода тепла процессора. Вертикальный кулер с тепловыми трубками. Выбор материалов радиатора и основания кулера

Довольно часто в технической периодике упоминаются такие характеристики процессоров, как TDP, температура кристалла, максимальная рассеиваемая мощность и т. д. Однако широкая публика недостаточно проинформирована о том, что означает каждый термин и как его трактовать, в обзорах порой появляются не совсем правильные толкования тех или иных результатов и, соответственно, ошибочные выводы. В статье рассмотрены вопросы тепловыделения на примере процессоров Intel, а также некоторые особенности CPU следующих поколений.

Как известно, у каждой сущности есть две крайности. Применительно к микропроцессорам это производительность и энергопотребление, причем первый параметр нам знаком лучше, так как ему в прессе уделяется наибольшее внимание, а о втором рядовой пользователь ПК осведомлен значительно меньше. Знания же эти делятся на две час-ти - эмпирические и теоретические, при этом вторые чаще всего сводятся к знакомству с загадочной аббревиатурой TDP (Thermal Design Point или Thermal Design Power) и соответствующей единицей измерения - ватт. Термин TDP не имеет устоявшегося русскоязычного эквивалента, его можно перевести как «термальная проектная мощность» процессора. Понятием TDP чаще всего пользуются для того, чтобы охарактеризовать термальные (тепловые) показатели микропроцессора (его «горячесть»: чем меньше, тем лучше), и при прочих равных условиях процессору с низким TDP отдается предпочтение. Кроме того, данный показатель служит еще одной цели - устрашению потребителя. Мол, этот процессор рассеивает «много ватт», поэтому его применение в домашних или офисных условиях невозможно.

Как будет видно далее, все определяется не величиной этой мощности, а тем, насколько эффективно мы можем ее рассеивать. Эмпирическую оценку пользователь ПК получает «на слух» - компьютер шумит (что чаще всего связывают с системой охлаждения процессора), или же визуально - через BIOS либо с помощью ПО, поставляемого производителем материнской платы. К сожалению, этим характеристикам обозреватели обычно не уделяют должного внимания, а именно: не просто упоминанию значений температуры в тех или иных местах платы, а их правильному толкованию. К примеру, если пользователь ПК наблюдает в показаниях утилиты температуру процессора в 100 °С, отчаиваться не стоит - на самом деле она гораздо ниже. При столь высокой температуре процессор просто не смог бы функционировать, так как в случае перегрева, каковым и является данное значение, CPU просто остановится. А это означает, что подобная температура не может быть достигнута даже теоретически.

Собственно, главная цель предлагаемого материала - разъяснить, что же скрывается под упомянутыми характеристиками и как их нужно правильно понимать и использовать. Все дальнейшие рассуждения относятся исключительно к микропроцессорам Intel.

Введение в физику процессов

Прежде всего напомним некоторые принципы энергообеспечения микропроцессоров и основы термодинамики, чтобы дать представление о круге задач, решаемых производителем.

Микропроцессор Intel снабжается энергией от источника VRD (Voltage Regulator Down), многим известного как преобразователь напряжения. Он преобразует напряжение 12 В в требуемое для питания процессора - около 1,5 В и менее (Vcc - Voltage CPU Сore, напряжение питания ядра процессора). При этом происходит преобразование напряжения питания на шине 12 В с током 16 А (192 Вт), как указано на блоке питания, в напряжение питания 1,5 В, но током в 100 А (данные цифры приводятся исключительно для упрощения математических расчетов). В такой ситуации, конечно, происходит потеря части мощности (в нашем случае это, к примеру, 42 Вт), поскольку преобразователь имеет КПД менее 100%. Итоговый ток в 100 А поступает на процессор по нескольким сотням ножек - в технической документации можно с удивлением обнаружить, что большинство контактов сокета LGA775 задействованы под питание процессора и заземление.

Значение этой части мощности довольно высоко. Процессор с частотой ядра в 3 GHz рассеивает меньше, чем CPU с частотой 3,4 GHz, но оба они попадают под TDP 95 Вт! О самом параметре TDP мы поговорим чуть ниже, главное пока - понять, что максимальная рассеиваемая процессором мощность - не то же самое, что параметр TDP.

Мощность, покидающая процессор, превращается в тепло, которое для уравнивания теплового баланса должно переместиться в другое место. Если бы возможность отвода этого тепла от процессора не была предусмотрена, то температура CPU стремительно возросла бы и он вышел бы из строя. Поэтому тепло, сгенерированное процессором (его кристаллом), нужно отвести подальше от микросхемы и потратить на абсолютно бесполезную вещь - нагрев воздуха в комнате. Для этого был придуман Fan Heatsink Solution, или активная система охлаждения. Современная конструкция изображена на рисунке (вентилятор там не показан). Тепло, выделяемое кристаллом процессора (на рисунке - темно-зеленого цвета), выводится из него в следующем порядке: сначала проходит через теплопроводящий материал микросхемы, затем попадает на металлическую крышку распределителя (основное назначение которой - не механическая защита кристалла, как многие полагают, а равномерное распределение тепла, рассеиваемого кристаллом микропроцессора). После этого оно перемещается на так называемый теплопроводящий материал, который нанесен на подошву радиатора и имеет разные кристаллические фазы в зависимости от температуры (поэтому никогда не пытайтесь снять теплоотвод с процессора без предварительного включения ПК на 10-15 мин, иначе можно просто вырвать процессор из сокета, особенно при использовании Socket 478). Далее тепло поступает на радиатор и при помощи обдува вентилятором выходит за пределы конструкции.

Еще раз напомним, что главная задача этой конструкции - отвести тепло от микропроцессора и развеять его в окружающем пространстве. На этом пути нас ожидают определенные трудности, и основная из них связана с обеспечением термальной эффективности устройства. Оно представляет собой «слоеный пирог», каждый слой которого может как помочь, так и навредить. Любой материал имеет свою характеристику теплового сопротивления или, в терминологии Intel - термальную эффективность (в документации на процессор - параметр Ψ). Это означает, что он будет нагреваться, а в итоге тепло может вернуться на кристалл процессора. Тепловое сопротивление измеряется в °C/Вт (чем меньше, тем лучше) и показывает, что при прохождении через материал тепловой мощности в 1 Вт температура материала поднимется на эту величину. Например, при прохождении одного ватта тепловой мощности через материал радиатора с параметром Ψ = 0,3 °С/ Вт его температура повысится на 0,3 °С, при 100 Вт тепловой мощности нагрев составит уже 30 °С. Добавив к этому значению температуру окружающей среды в 40 °С, без особых усилий получим целых 70 °С! А это значит, что рано или поздно нагреется и процессор, чего мы как раз и хотим избежать, или, по крайней мере, минимизировать.

Автор пытался оценить качество термопаст, распространенных на отечественном рынке, - оно не выдерживает критики. Во всех случаях их использование приводило к тому, что частота вращения вентилятора теплоотвода процессора была на 200-300 оборотов больше, чем для теплопроводящего материала от Intel. Причина этого - высокое значение теплового сопротивления. Конечно, Intel не выпускает такой материал для своих «коробочных» изделий самостоятельно, но при выборе поставщика проводится тщательный анализ по соотношению цена/производительность. Материалы с самыми хорошими характеристиками стоят дорого, та же закономерность свойственна и для радиаторов. Можно сделать его целиком медным и с огромной площадью рассеивающей поверхности, но он выйдет тяжелым, громоздким и дорогим. Можно использовать дополнительный вентилятор, воздушный поток от которого будет «сдувать» тепло с поверхности радиатора - дешево, но шумно. Есть и другие экзотические способы - например водяное охлаждение, криогенные установки. Они более эффективны, но в массовое производство вряд ли попадут из-за высокой цены и низкой надежности.

Поэтому Intel использует ряд технических решений, в итоге дающих оптимальный баланс. Поиск оптимального решения для охлаждения - это всегда компромисс между стоимостью, эффективностью и надежностью. Общий термальный показатель теплоотвода является суммой тепловых сопротивлений каждого из элементов нашего «пирога», которые встречаются на пути движения тепловой мощности. И каждый элемент может существенно влиять на итоговую интегральную характеристику термальной эффективности теплоотвода.

Подробнее о TDP

TDP - величина, которая применяется для расчета термальной эффективности системы охлаждения. Широко распространенное мнение о том, что TDP определяет максимальную рассеиваемую мощность процессора Intel, в корне неправильно.

Как же используется TDP? Входными данными для расчета тепловой эффективности системы охлаждения (и в итоге разработки ее дизайна) являются значение TDP и максимальная рабочая температура кристалла T case max . Она измеряется в точке T case (см. рис.) - геометрическом центре на поверхности крышки распределителя тепла (обратите внимание: T case - это не температура кристалла, как ошибочно считается). В качестве примера рассмотрим значение TDP в 95 Вт, которое сегодня применяется для расчета систем охлаждения приблизительно у 90% настольных процессоров Intel. Tcasemax для них составляет приблизительно 70 °С (точное значение можно узнать в базе данных SSpec на сайте support.intel.com по SL-коду, присутствующему на маркировке микросхемы и картонной упаковке процессора). Формула для расчета термальной эффективности (теплового сопротивления) будет выглядеть так:

T case max = T ambiеnt + TDP × Ψ,

где T ambiеnt - температура «окружающей среды»,

Ψ = (T case max - T ambiеnt)/TDP = (70 - 38)/95 = 0,34 C/Вт.

В итоге мы должны спроектировать систему охлаждения с такой термальной эффективностью. И тут начинается борьба «добра» (термальная эффективность) со «злом» (экономичность).

Представим, что мы разработали такую систему, теперь ее нужно проверить. Для этого придется повредить поверхность крышки распределителя тепла. В ней делается канавка, в которую закладывают одну термопару. Другую располагают на поверхности двигателя вентилятора (на рис. T ambient). Первой термопарой мы измеряем температуру кристалла, а второй - окружающей среды. Начинаем постепенно загружать процессор и смотрим, как работает наша система охлаждения. При достижении порога 95 Вт температура в точке измерения не должна превышать 70 °С. Указанную мощность могут рассеивать всего несколько моделей из 90% вмещающихся «под зонтиком» в 95 Вт, остальные никогда не доберутся до данного значения. Например, в линейке процессоров Intel Pentium 6×1 все модели рассеивают до 86 Вт, т. е. гипотетически можно предположить, что только начиная с частоты ядра 3,8-4 GHz указанный барьер будет преодолен.

Итак, если во время наших замеров температура в этой точке превышает T case max = 70 °C, что-то здесь не так. Например, на подошву радиатора мы нанесли дешевую термопасту. Возникает вопрос, сколько же максимально может рассеивать процессор Intel при TDP в 95 Вт. В принципе, самая топовая модель семейства способна рассеивать и немногим больше, но это достижимо только при запуске специальной утилиты Intel (широкой общественности она недоступна), задача которой заставить работать все транзисторы на процессоре. С помощью коммерческого ПО этого результата добиться практически невозможно.

Теперь перейдем к вопросу о том, можно ли использовать показания датчиков из BIOS или специализированного ПО для оценки эффективности системы охлаждения. Для этого нужно понять, какую же температуру пользователь видит в настройках BIOS или ПО материнской платы. Дело в том, что на самом кристалле есть два термодатчика. Об одном, датчике управления TCC, мы временно забудем. Второй (на рис. T diode) представляет собой термодиод, у которого анод и катод выведены на две контактные площадки процессора в корпусе LGA4 (для гнезда LGA775). Есть несколько моделей использования этого датчика. К примеру, на плате стоят так называемый токовый компаратор и схема АЦП, которая преобразует разницу токов эталонного и конкретного датчика в цифру и сообщает пользователю это значение через BIOS или специализированное ПО от производителя платы, предварительно проведя конвертацию данного значения в температуру по имеющемуся шаблону, который может быть ошибочным. То есть при считывании числа 12, которое должно соответствовать температуре в 40 °С, мы переводим его в 47 °С или, что еще хуже, мы считали с датчика вместо 12 число 16, что соответствует 70 °С.

Таким образом, мы видим так называемую температуру кристалла… которую уже один раз измеряли, но в другом месте и другим способом. Здесь и сокрыто наибольшее число проблем, вот несколько из них. Во-первых, датчик показывает температуру в конкретном месте на кристалле, и если она в этой точке равна 100 °С, то это еще не означает, что весь кристалл имеет такую же температуру. Ее значение, отображаемое на экране монитора, во многом определяет используемое прикладное ПО. А именно: при 90% загрузки процессора во время игры в DOOM она составит 70 °С, а при тех же 90% загрузки в Photoshop - 55 °С. Т.е. температура в этой точке зависит от того, какие близлежащие блоки CPU используются наиболее активно.

Во-вторых, схема преобразования на плате может быть не откалибрована (чаще всего коррекция калибровки делается через BIOS) или попросту выйти из строя, а специализированное ПО материнской платы - ошибочно запрограммировано на неверный шаблон значений. По этим причинам Intel категорически не рекомендует использование значений данного датчика (в BIOS или ПО плат) для выполнения работ по термальной валидации собранных ПК. Как пример можно привести , в которой исследовались производительность и тепловые характеристики процессора Intel Pentium Extreme Edition 955 на материнской плате Intel D975XBX. Проведя большое количество замеров температур этим (не рекомендованным) датчиком и получив бoльшие значения, обозреватель сделал вывод о том, что показатель максимальной рассеиваемой мощности данного CPU составляет 200 Вт, а не 130, как заявляет Intel.

С подобной ситуацией столкнулись сотрудники одного из популярных англоязычных Web-ресурсов. Когда они увидели, что датчик показывает аномальные значения температур в 100 °С и более, то обратились в Intel, и после безуспешной попытки решить проблему через обновление BIOS (чаще всего это устраняет аномальные показания) пришлось заменить плату. Кроме того, опыт оверклокинга данного процессора (с разблокированным коэффициентом умножения) говорит о том, что со стандартной системой охлаждения Pentium Extreme Edition 955 можно разогнать до 4,2 GHz без модуляции частоты ядра (об этом позже). И стоит еще раз напомнить, что 130 Вт - это проектная характеристика системы охлаждения, а не процессора. Другими словами, это явилось подтверждением рекомендации производителя не использовать данные значения для оценки эффективности систем охлаждения.

Возникает вопрос: зачем такой датчик, где его можно использовать? Основное его назначение сегодня - управление частотой вращения вентилятора системы охлаждения для LGA775. Та же схема считывает показания этого датчика и с помощью четвертого провода вентилятора системы охлаждения (подключаемого к материнской плате), используя ШИМ-модуляцию, управляет частотой вращения вентилятора. Эта схема существенно отличается от применявшейся в системе охлаждения Socket 478, где вентилятором управлял датчик температуры, располагавшийся над двигателем, под крышкой вентилятора с маркировкой Intel. При такой схеме необходимо было учитывать инерционность системы охлаждения, в связи с чем вентилятор работал на оборотах значительно выше, чем необходимо, а значит, шум был более высоким. Температура процессора могла резко возрасти (точка T diode), но мы почувствовали бы это только через длительное время - датчик температуры, который призван немедленно реагировать на все изменения, находится в точке T ambient . Вот и приходилось крутить вентилятор на скорости 2000, а не 1500 об/мин.

На LGA775 система контроля за температурой кристалла T diode моментально реагирует на рост температуры и увеличивает частоту вращения. Как и в предыдущем случае, производитель платы может ошибиться в программировании системы управления и разгонять вентилятор тогда, когда в этом нет необходимости. Данная проблема с неоткалиброванными датчиками или ошибочным программированием будет устранена в следующем поколении чипсетов семейства Broadwater (i965), где схема считывания температуры и управления частотой вращения вентилятора является частью системной логики. Кроме этого, датчик(и) на процессоре Conroe станут цифровыми (схема цифровых датчиков уже работает на Intel Core Duo и называется DTS).

В качестве промежуточного итога отметим следующее. Показатель TDP процессора используется как отправная точка при расчете тепловой эффективности системы охлаждения для этого CPU. Применение датчика температуры (T diode) для схемы управления частотой вращения вентилятора - на сегодня один из наиболее прогрессивных механизмов снижения уровня шума ПК, по крайней мере, в части системы охлаждения процессора. Однако не следует применять показания этого датчика как точную оценку термальной эффективности системы охлаждения процессора и тепловых характеристик системы.

Поведение CPU при перегреве

Отдельно рассмотрим, как ведет себя процессор Intel, когда система охлаждения не справляется с отводом тепла. Этим заведует второй датчик на CPU, который полностью автономен и доступа к нему нет (на рис. это T prochot). Все пороговые значения для него «зашиваются» на фабрике на этапе изготовления. Их два - T prochot и T thermtrip . При достижении датчиком первого значения начинается модуляция частоты ядра процессора. Существуют две схемы - TM2 и TM1. Чаще всего производитель платы сам решает, какую из них использовать, но Intel рекомендует по возможности применять TM2. В этом случае у процессора меняется коэффициент умножения до 12 (2,4 GHz у новых образцов) или 14 (2,8 GHz у старых), а затем снижается напряжение питания ядра. При нормализации температуры CPU возвращается в номинальную рабочую точку в обратном порядке. При изменении напряжения питания процессор доступен и работает, тогда как при изменении коэффициента умножения он становится недоступным на 5 или 10 мкс (в зависимости от модели).

По схеме TM1 выполняется модуляция частоты ядра - из 3 мс ядро простаивает 1,5 мс и работает 1,5 мс. У нее есть еще программная возможность управления скважностью. Данной схемой пользуются утилиты, которые снижают шум системы охлаждения. Понятно, что за это приходится платить производительностью, чудес не бывает. Назначение обеих схем простое: если процессор перегрелся, его необходимо притормозить, дав возможность остыть, что лучше, чем сразу останавливать работу - можно будет хотя бы сохранить файлы. Как только процессор остыл и датчик это «почувствовал», схема TCC (Thermal Control Circuitry) отключается. Конечно, добавлен небольшой гистерезис, дабы избежать постоянных переключений режимов.

Для ТМ2 и ТМ1 их включение проявляется в виде замедления работы системы. Если это не исправило положения, датчик немедленно включает схему THERMTRIP, все внутренние блоки процессора останавливаются и формируется сигнал, отдающий команду преобразователю напряжения (VRD) прекратить подачу питания на CPU. Приблизительное значение температуры, при которой возникает данная ситуация, - 90 °С. Совсем недавно появилась возможность включать схемы TM1/TM2 при перегреве VRD: процессор тормозится и начинает меньше потреблять, и VRD может «передохнуть». На Pentium D вместо сигнальной линии PROCHOT# используется FORCEPR# для активации замедления процессора при перегреве преобразователя напряжения.

Наличие отдельного датчика для схемы борьбы с перегревом порождает новую группу проблем. Мы можем видеть на процессоре температуру T diode = 100 °C, а на датчике T prochot она достигнет лишь 70 °С, т. е. по показаниям первого датчика процессор должен был уже давно остановиться, а он функционирует. И снова все определяется профилем ПО, который по-разному может влиять на показания этих датчиков. Самое неприятное в этой схеме защиты то, что по умолчанию она заблокирована, и задача BIOS материнской платы - включить ее. (забывчивость проектировщика BIOS или его ошибка может дорого обойтись владельцу ПК). В новейших процессорах Conroe одни и те же датчики используются как для схемы управления частотой вращения вентилятора, так и для управления СPU при перегреве. Это должно устранить проблему разночтения показаний датчиков. Данная схема реализована в Intel Core Duo (Yonah) - уже упоминавшийся DTS. Резюме простое: разработчики процессора делают все, чтобы даже при его перегреве сохранялась возможность продолжать работу. Даже в случае катастрофического перегрева можно не волноваться - сам CPU и правильно спроектированная материнская плата с корректной BIOS не позволят себя сжечь.

Дальше - лучше

В заключение затронем один из самых главных вопросов: что делает Intel для снижения показателя рассеиваемой мощности? Существуют два основных пути. Первый - на уровне микроархитектуры отключать те блоки процессора, которые в данный момент не используются. Эта схема наиболее активно применяется в мобильных микропроцессорах. Второй путь - вносить изменения на уровне полупроводниковых материалов. Одной из основных целей при внедрении техпроцесса 65 нм было уменьшение токов утечки, и этого удалось достигнуть - их значения снизились в сотни раз. В итоге, к примеру, мы получили двухъядерные микропроцессоры 900-х моделей степинга C-1, «умещающиеся» в термальный пакет 95 Вт на частотах до 3,4 GHz включительно.

Естественно, рассказ был бы неполным без попытки заглянуть в ближайшее будущее. В III квартале этого года ожидается десктопный процессор с кодовым названием Conroe, который на момент выхода явится квинтэссенцией инноваций Intel в области энергоэффективной производительности. Ожидается 40%-ное повышение быстродействия (по сравнению с Intel Pentium D 950) по тесту SPECint_rate и еще более высокий рейтинг в играх, при этом рассеивающий всего 65 Вт тепловой мощности, использующий более совершенную схему управления частотой вращения вентилятора и контроля перегрева.

Представленный материал в ряде мест был намеренно упрощен, однако, надеемся, не потерял при этом актуальности. Подробную информацию по тепловым характеристикам процессоров Intel можно найти на сайте support.intel.com в следующих документах: Thermal аnd Mechanical Design Guide (TMDG), Thermal Design Guidelines, Processor Datasheet, VRD Design Guide.

Доброго времени суток.

Темой нашей беседы в рамках этой статьи будет TDP процессора — что это и «с чем его едят», как говорил медвежонок Умка в одноименном мультфильме:).

Объяснение непонятного

Эта неизвестная многим аббревиатура скрывает в себе такое определение на английском языке - thermal design power, а иногда вместо последнего слова подразумевается «point».

Переводится это как «конструктивные требования по теплоотводу».

О чем говорит данный параметр? Начну с самого начала, чтобы было понятно даже тем, кто мало знаком с компьютерами.

Как известно, практически все вычисления на ПК выполняет . От такого тяжелого труда он нагревается и, соответственно, выделяет тепло. Дабы он не перегорел, в комп устанавливается система охлаждения, предназначенная специально для определенного семейства процев. Так вот, на какой отвод тепла она рассчитана и указывает TDP.

На что может повлиять несоответствие требований реальным показателям? Это очевидно. Если микросхема будет постоянно перегреваться, сначала она перестанет выполнять только некоторые из поставленных вами задач, и незадолго после этого перегорит. Вот почему ватты на системе охлаждения, то есть TDP, должны равняться (или даже преувеличивать) производительности проца.

Как ведется расчет?

Допустим, в характеристиках к кулеру указано, что он справляется с тепловой мощностью в 30 Вт. Это значит, что он способен отводить такое тепло при нормальных условиях работы процессора (нормальных, не повышенных!); повышение температуры предполагается лишь изредка. Я имею в виду, что производитель изначально подразумевает, в какой примерно среде будет использоваться CPU (температура, влажность и пр.) и в соответствие с этим устанавливает требования к системе охлаждения.

Если говорить по простому то ТДП — это количество тепла которое выделяет проц (при нормальных условиях работы), обозначенное в условных единицах.

Кстати, прошу не путать TDP с энергопотреблением процессора, то есть первый параметр не показывает максимальную мощность устройства, а говорит, сколько тепла может отвести кулер.

Еще не стоит сравнивать показатели одной системы с другой. Потому что изготовители процев по-разному устанавливают требования по теплоотводу. Во-первых, рабочая температура в разных моделях отличается. И если для одних будет критичной 100 °С, для других - в половину меньшая.

Во-вторых, изготовители обычно указывают средние TDP для целых семейств микросхем. Но выпущенные ранее устройства потребляли меньше энергии, чем современные. Поэтому прописывается обычно максимальная величина, которая подходит для всех.

Перечислять требования для каждой линейки процев разных брендов я не буду, чтобы не захламлять статью лишней информацией. Если вам интересно, поищите в интернете характеристики конкретно для своего девайса. Вот например таблицы для i7: https://ark.intel.com

А вот таблица всех процов от АМД:

В общем. Если вы подбираете охлаждение для процика то берите кулер с показателем ТДП с небольшим запасом. На всякий случай.

На этом всё друзья.

Старался написать как можно более понятно и кратко, надеюсь вопросов не возникнет.

Помните, что на этом сайте вы всегда желанный гость.

До новых встреч на его страницах!

Тепловыделение процессора – один из главных параметров, на который следует обращать внимание при сборке компьютера. CPU является ключевым компонентом, от которого зависит работа всей системы. Если он будет перегреваться, начнется режим принудительного охлаждения, следствием которого является пропуск тактов, то есть появление проблем с производительностью компьютера. Когда процессор не может охладиться даже таким образом, он начинает автоматически выключиться, чтобы не выйти из строя окончательно. Говорить о вреде резкого отключения компьютера, вероятно, не стоит, к тому же, когда это происходит в аварийном режиме работы центрального процессора.

Чтобы CPU сохранял допустимую температуру, ему необходимо дополнительное охлаждение. Именно поэтому важно правильно выбрать кулер для процессора. Имеется множество нюансов, на которые необходимо обращать внимание при подборе процессорного вентилятора, а также важно не забывать об основных параметрах при его выборе.

Зачем менять кулер, который идет в комплекте

В продаже можно встретить центральные процессоры в комплектациях OEM и BOX. В плане производительности между данными версиями CPU одной модели нет никаких различий, и они отличаются только комплектацией. OEM версия представляет собой только сам центральный процессор, тогда как комплектация BOX подразумевает наличие кулера.

У многих пользователей, которые не имеют большого опыта в сборке компьютера, может сложиться впечатление, что идеальным решением является покупка BOX комплектации процессора, но это не всегда так. Кулеры, которые идут в комплекте с процессором, чаще всего посредственного качества, и они не способны обеспечить охлаждение «камня» при его высокой нагрузке. То есть, если CPU приобретается в офисный компьютер, где перед ним не будет стоять задач сложнее работы с браузером и текстовым редактором, тогда никаких проблем с охлаждением процессора кулером из BOX комплектации не возникнет. Но если «камень» планируется использовать в играх и других ресурсоемких приложениях, тогда нужно озаботиться покупкой более мощного кулера.

Современные процессоры состоят более чем из 500 миллионов транзисторов, каждый из которых нагревается в процессе работы. Из-за малой площади CPU, столь серьезное тепло самостоятельно рассеяться не может, и для его отвода требуется дополнительный кулер. Чем более сложные задачи ставятся перед процессором, тем более эффективное охлаждение необходимо.

Как выбрать кулер для процессора правильно

Самое главное при выборе кулера – это подобрать его под характеристики процессора. Очевидно, что чем мощнее процессор, тем больше тепла он выделяет при высокой нагрузке. Соответственно, ему нужно большее охлаждение. Параметр тепловыделения процессора принято обозначать TDP, и он измеряется в Ваттах. Обращая внимание на тепловыделение процессора, нельзя забывать, что также модели отличаются друг от друга по типу сокета. А теперь рассмотрим подбор по каждому из параметров чуть подробнее.

Сокет процессора

Сокетом называется типоразмер процессора, и он обозначается: AM3+, 1150, 2011-3 и другими сочетаниями букв и цифр. Производители стараются стандартизировать CPU под определенные размеры, но, из-за изменения технологии производства в течение времени, их уже доступно около десятка. Сокет – это размер разъема на материнской плате, куда вставляется сам «камень».

Таким образом, выбирая кулер для процессора, изначально следует узнать модель процессора и уточнить в интернете на сайте производителя, в каком типоразмере она выполнена. Часто кулеры подходят к нескольким сокетам, благодаря универсальности креплений.

Тепловыделение процессора

Определившись с типоразмером, нужно посмотреть на тепловыделение процессора. Узнать информацию о параметре TDP того или иного процессора можно на официальном сайте производителя.

С подбором кулера по параметру тепловыделения для определенной модели процессора все несколько сложнее. Дело в том, что в интернет-магазинах и на различных сайтах довольно редко можно отыскать точную информацию о том, для процессоров с каким TDP подходит тот или иной кулер. Однако именитые производители вентиляторов для процессоров, например, компания Noctua, не стесняются указывать подобные сведения.

Если информацию о конкретной модели кулера найти не удалось, можно воспользоваться данными из таблицы, представленной ниже. Обратите внимание, что сведения в ней весьма приблизительные, и лучше выбирать вариант вентилятора для процессора «с запасом».

Как выбрать качественный кулер

Отобрав модели кулеров по параметрам процессора, все равно останутся десятки, а то и сотни вариантов вентиляторов, которые можно приобрести. В такой ситуации следует посмотреть на отзывы о качестве того или иного кулера, оставленные их владельцами. Но лучше самостоятельно отмести из доступных вариантов наименее качественные, оценив вентиляторы по следующим параметрам.

Основание кулера

Площадь, которой кулер касается процессора, играет важную роль при охлаждении. Поскольку размеры «камня» фиксированы, увеличить данную площадь соприкосновения практически невозможно. При этом некоторые производители кулеров, в поисках инноваций, частично выводят тепловые трубки на основании вентилятора. Из-за этого снижается площадь соприкосновения и эффективность кулера.

Также немаловажно, чтобы основание было выполнено без различных узоров. Оно должно представлять собой отполированную до зеркальности медь. Перед покупкой необходимо осмотреть кулер, чтобы на его основании отсутствовали порезы, неровности и другие дефекты.

Обратите внимание: В большинстве случаев основание кулера выполняется из меди. Данный материал является бюджетным и эффективным с точки зрения передачи тепла. Бывают алюминиевые варианты, но они значительно менее эффективные. При этом медь может покрываться никелем, из-за чего она приобретает серебряный цвет.

Тепловые трубки

Практически на каждом современном кулере можно видеть несколько тепловых трубок, тогда как ранее их не использовали. Дело в том, что с увеличением мощности процессоров и ростом выделения ими тепла, действовавших стандартов охлаждения перестало хватать, и производители решили использовать проверенный вариант – установку теплопроводных трубок.

Медная трубка заполняется жидкостью и запаивается с двух сторон. При нагреве жидкость нагревается и переходит в газообразное состояние. Газ двигается к другой стороне трубки и отводит тем самым тепло. Далее пар охлаждается, вновь превращается в воду и возвращается к основанию трубки. В компьютерных кулерах процесс происходит примерно также, за исключением того, что также внутри имеется пористый материал, который необходим, чтобы жидкость возвращалась назад, даже когда трубки расположены в горизонтальном положении.

При выборе кулера для процессора необходимо обращать внимание на то, сколько установлено трубок. По своим свойствам они не сильно отличаются, в зависимости от размеров, поэтому основным критерием становится количество. Минимально допустимое количество для охлаждения современного мощного процессора – это 3-4 трубки, но чем больше, тем лучше.

Радиатор

С основания кулера тепло переходит на радиатор, который представляет собой десятки пластин, надетых на тепловые трубки.


Радиатор может быть любой формы, но важно запомнить некоторые правила, которые отличают хороший вариант от плохого:

  • Чем больше площадь радиатора, тем лучше;
  • Пластины должны быть тонкими, но в большом количестве;
  • Лучше когда радиатор выполняется из меди.

Поскольку радиатор на кулере частично виден в открытом компьютере, некоторые фирмы стараются выполнить его наилучшим образом с дизайнерской точки зрения. Он может быть различного цвета, формы, пластины выполняются под необычными углами наклона. Если соблюдены указанные выше правила, то на качестве кулера дизайнерские решения сказываются незначительно.

Вентилятор

Некоторое время назад, в погоне за тихой работой компьютера, производители делали все, чтобы отказаться от активного элемента охлаждения, то есть от самого кулера. Однако радиатор без элемента для рассеивания тепла не справляется с мощными процессорами, и от вентиляторов в кулере для процессора до сих пор не отказались.

При выборе вентилятора необходимо обращать внимание на его размер, соответственно, и на размер лопастей. Кулеры с большими лопастями не только более эффективны с точки зрения отвода тепла от радиатора, но и тише. Имеется ошибочное мнение, что значительно важнее скорость вращения кулера, но это не так. Скорость – немаловажный параметр, но диаметр самого вентилятора важнее. Если в компьютер установить кулер с маленьким диаметром лопастей, но высокой скоростью вращения, такой PC будет сильно шуметь даже при выполнении «офисных задач».

Также при выборе кулера необходимо обратить внимание на тип подшипника, на который крепится вентилятор. В продаже можно найти варианты, выполненные на подшипнике качения (Ball Bearing) или скольжения (Slide Bearing). Лучше себя проявляют подшипники качения, которые меньше шумят и имеют больший ресурс работы.

Как установить кулер на процессор

Правильно выбрав кулер, проблем с его установкой возникнуть не должно. При помощи специальных креплений вентилятор устанавливается поверх процессора, вставленного в пазы сокета. Чаще всего вместе с кулером идет подробная инструкция по его установке, которая позволяет в общих чертах понять принцип работы скрепляющего механизма.

Перед установкой кулера важно . Она необходима, чтобы устранить неровности между основанием кулера и процессора, для максимальной передачи тепла. Без термопасты процессор долго проработать не сможет, поэтому пренебрегать данным шагом запрещено.

Если вы решили собрать новый компьютер самостоятельно, то вам предстоит решить ряд проблем, связанных с подбором комплектующих. Одной из таких проблем является выбор кулера для процессора. В данной статье мы рассмотрим основные моменты в этом не хитром деле.

Стандартный кулер для процессора

При сборке нового ПК всегда есть соблазн выбрать стандартный кулер, который поставляется вместе с процессором. Ведь при его использовании можно немного сэкономить.

Если вы собираете компьютер для работы с не требовательными программами, то стандартного кулера будет вполне достаточно. Более того, если в корпусе будет организовано хорошее движение воздуха, то стандартный кулер справится даже с тяжелыми программами и компьютерными играми.

Единственное для чего стандартный кулер точно не подойдет, это разгон процессора. Если вы планируете разгонять процессор, то нужно обязательно брать более эффективную систему охлаждения.

Также не стоит выбирать стандартный кулер (или как его еще называют «Боксовый кулер») если вы хотите собрать тихий компьютер. Стандартные кулеры обычно очень маленького диаметра и из-за этого они заметно шумят. При этом обороты у такого кулера должны быть высокие, ведь радиатор под ними также небольшой.

Сокет и габариты кулера для процессора

Если вы выбираете кулер для процессора, то первое, что нужно учитывать это и габариты кулера.

Если выбрать кулер, который ее поддерживает сокет вашего процессора, то вы просто не сможете его установить, кулер не встанет на нужное место. Если же ошибиться с габаритами кулера, то у вас могут возникнуть проблемы при закрытии корпуса. Если кулер окажется больше того пространства, которое есть между процессором и крышкой корпуса, то вы просто не сможете установить боковую крышку.

В случае особо больших кулеров и компактных материнских плат возможны ситуации, когда кулером будут перекрываться слоты под оперативную память или даже PCI Express разъемы. Это также необходимо учитывать при выборе кулера для процессора.

Не стандартный кулер в корпусе компьютера

Поэтому, чтобы не пришлось потом сдавать кулер обратно в магазин, лучше внимательно изучить характеристики кулера и убедиться, что в списке поддерживаемых сокетов есть сокет вашего процессора, а габариты кулера не создадут проблем при сборке системы.

Эффективность кулера

При выборе кулера для процессора очень важно правильно оценить его эффективность и тепловыделение процессора. Для этого лучше всего ориентироваться на TDP процессора и кулера. TDP расшифровывается как «Thermal design power», что в свою очередь можно перевести как «Требования к системе охлаждения». TDP указывается в Ваттах и обозначает количество тепла, которое должна отводить система охлаждения процессора. Более подробно об это можно почитать .

Если в характеристиках кулера указывается TDP на которое он рассчитан, то просто сравните TDP кулера с TDP процессора. В случае если TDP кулера больше, то такой кулер можно спокойно покупать. Он без проблем справится с охлаждением вашего процессора.

Но, в характеристиках кулеров далеко не всегда есть информация о TDP. В этом случае при выборе кулера для процессора приходится оценивать его эффективность опираясь на косвенные факторы. Такими факторами являются:

  • Вес радиатора . Чем тяжелее радиатор, тем больше тепла он может забрать от процессора и рассеять в окружающее его пространство. Поэтому чем больше вес радиатора, тем эффективней система охлаждения.
  • Количество тепловых трубок . Тепловые трубки передают тепло от процессора к ребрам радиатора. Поэтому чем больше тепловых трубок и чем больше их диаметр, тем эффективней работает радиатор.
  • Количество кулеров и их размер . Чем больше кулеров на радиаторе и чем больше диаметр этих кулеров, тем лучше обдувается радиатор и тем эффективней система охлаждения.
  • Контакт тепловых трубок . Тепловые трубки могут контактировать с процессором либо напрямую, либо через дополнительную пластину. Оптимальный вариант – это прямой контакт. Так тепловые трубки смогут лучше передавать тепло от процессора к ребрам радиатора.

Основной и главной частью компьютера является процессор или CPU. Именно он влияет на производительность и качество работы вашего компьютера. Для выбора процессора следует руководствоваться тем, какие задачи будут решаться вами на компьютере: от простых (набор текста, бухгалтерия) до сложных (AutoCAD, 3D моделирование, вычислительный сервер).

На рынке представлены две компании, предлагающие пользовательские и серверные процессоры - Intel и AMD.

На данный момент компания Intel предлагает процессоры на трех основных сокетах:

  • LGA1155 – процессоры Celeron, Pentium и Intel Core семейств Sandy Bridge и Ivy Bridge.
  • LGA2011 – процессоры Intel Core и Xeon семейств Sandy Bridge и Ivy Bridge-E.
  • LGA1150 – процессоры Intel Haswell

Компания AMD на данный момент предлагает процессоры на трех сокетах:

  • Socket FM1 – процессоры семейства AMD Fusion
  • Socket FM2 – процессоры семейств AMD Trinity и AMD Richland
  • Socket FM2+ – процессоры семейства Kaveri
  • Socket AM3+ – процессоры семейства AMD Vishera

Основные характеристики CPU

Тактовая частота процессора

Тактовые колебания внутри процессора создаются специальным кристаллом кварца, на который подается напряжение - тактовым резонатором. Под действием напряжения в кристалле образуются электроколебания. Они подаются на тактовый генератор, который преобразует их импульсы и передает на шины данных и адреса. Тем самым синхронизируется работа всех составляющих центрального процессора, шин и оперативной памяти.

Такт – наименьшая единица для измерения времени работы процессора. При обмене данных с другими комплектующими процессор может потратить больше одного такта (большая их часть будет тактами ожидания из-за более медленных, по сравнению с процессором, шин данных и микрочипов оперативной памяти).

Более высокая тактовая частота будет весомым бонусом только при прочих равных параметрах процессоров. В некоторых случаях процессоры с более низкой тактовой частотой превосходят своих «быстрых» оппонентов как в быстродействии при выполнении определенных задач.

Количество ядер и потоков

Вычислительное ядро процессора представляет собой отдельный кристалл, способный выполнять отдельный поток команд. На сегодняшний момент процессоры для ПК несут, как минимум, два физических ядра. По сути, каждое ядро обеспечивает дополнительный параллельный поток вычислений и увеличивает общую производительность процессора. Но это в теории. На практике меньше половины ПО поддерживает многопоточные вычисления (задействуют во время работы больше двух вычислительных потоков).

Поэтому необходимо подбирать многоядерный процессор под конкретные задачи:

  • 2 ядра – интернет-серфинг, офисные и другие не ресурсоемкие приложения, старые или современные не ресурсоемкие компьютерные игры.
  • 4 ядра – практически все компьютерные игры, музыкальные и видеоредакторы, некоторые графические редакторы
  • Более 4 ядер (6 и 8) – серверное ПО, 2D и 3D графические пакеты и др.

Необходимо различать два понятия – физическое ядро и вычислительный поток (логическое ядро). С появлением технологии Hyper-threading от компании Intel количество вычислительных потоков (для операционной системы – логических ядер) увеличивалось в 2 раза по отношению к ядрам физическим. У каждого из логических процессоров есть свой набор регистров и контроллер прерываний, а остальные элементы процессора являются общими. Когда при работе одного из логических процессоров возникает пауза (кэш-промах, ошибка предсказания ветвлений, ожидание результата предыдущей инструкции), то управление передаётся потоку в другом логическом процессоре. Таким образом, пока один процесс ждёт, вычислительные ресурсы физического процессора используются для обработки другого процесса. Прирост производительности с помощью HT хоть и не двукратный, но довольно ощутимый (на Pentium 4 – до 30%, на Intel Core – от 20% до 50% в зависимости от модели).

Возможно, в будущем компьютерные игры перейдут на поддержку 8-ядерных систем. По крайней мере, производители игровых консолей следующего поколения уже анонсировали использование восьмиядерных решений от AMD.

Техпроцесс

При производстве полупроводниковых интегральных микросхем (в нашем случае, «камней» CPU) применяется фотолитография и литографическое оборудование. Разрешающая способность этого оборудования и определяет название применяемого конкретного технологического процесса.

Совершенствование технологии и уменьшение размеров полупроводниковых структур способствуют улучшению характеристик (размеры, энергопотребление, стоимость) изделий. Особую значимость это имеет для процессорных ядер (уменьшение потребления электроэнергии и повышение производительности).

Современные процессоры изготовляются по техпроцессам:

Кэш-память

Кэш –дополнительная быстродействующая память для хранения копий блоков информации из оперативной памяти, вероятность обращения к которым в ближайшее время велика. Различают кэши 1-го, 2-го и 3-го уровней (L1, L2 и L3, соответственно).

Кэш 1-го уровня имеет наименьшее время доступа, но малый размер, кроме того, кэши первого уровня часто делаются многопортовыми.

Кэш 2-го уровня обычно имеет значительно медленнее кэша 2-го уровня, но его можно сделать значительно больше по размеру. Работает кэш L2, обычно, на частоте процессора, что уменьшает задержку в обработке данных.

Кэш 3-го уровня – самый большой по объёму и довольно медленный кэш, но всё же он гораздо быстрее, чем оперативная память.

Рассеиваемая мощность (TDP)

TDP (thermal design power) – величина, показывающая, на отвод какой тепловой мощности должна быть рассчитана система охлаждения процессора. TDP показывает не максимальное теоретическое тепловыделение процессора, а требования к производительности системы охлаждения.

TDP рассчитан на "нормальные" условия, которые иногда могут быть нарушены. Например в случае поломки вентилятора или неверного охлаждения самого корпуса. При этом процессор дает сигнал выключения компьютера или переходит в режим троттлинга (throttling), когда процессор пропускает часть циклов.

На данный момент из домашних неразогнанных процессоров самыми горячими моделями у AMD считаются AMD Vishera (TDP – 125 Вт), у Intel – модель Intel Core i7-3970X Extreme Edition (TDP – 150 Вт), а также несколько моделей на LGA 2011(Intel Xeon с TDP в 135 Вт).

Множитель

Частота процессора получается из умножения его опорной частоты (обычно, FSB – частота шины данных) на "коэффициент умножения процессора". В технических характеристиках процессора этот коэффициент обозначается, как множитель.

Разгон процессора (увеличение его тактовой частоты) можно осуществить двумя способами:

  • Увеличить опорную частоту (FSB)
  • Увеличить значение множителя

В большинстве моделей множитель заблокирован (практически все модели от Intel и бюджетные модели от AMD), и разгон возможен только с помощью увеличения частоты шины данных. Модели с разблокированным множителем имеют в названии литеру «K» и рассчитаны на оверклокинг. Разгон прочих моделей процессоров производится на свой страх и риск, при неудачном исходе можно сжечь и процессор, и процессорное гнездо на материнской плате, и при всем этом лишиться гарантийного обслуживания.

Цены на модели приводятся усредненные для BOX-версий на январь 2014 года.

До 2000 рублей:

  • Лучший вариант Intel Celeron G1820 (LGA1150)
  • Альтернатива – Intel Celeron G1610 (LGA1155)
  • Альтернатива – AMD A4-5300 (Socket FM2)

От 2000 до 2500 рублей:

  • Лучший вариант – Intel Pentium G3220 (LGA1150)
  • Альтернатива – Intel Pentium G2030 (LGA1155)
  • Альтернатива – AMD Athlon X2 370K (Socket FM2)

От 2500 до 3000 рублей:

  • Лучший вариант – Pentium G3420 (LGA1150)
  • Альтернатива – Athlon X4 750K (Socket FM2)
  • Альтернатива – Pentium G2130 (LGA1155)

От 3000 до 3500 рублей:

  • Лучший вариант – AMD FX-4130 (Socket AM3+)
  • Альтернатива – AMD A8-5600K (Socket FM2)
  • Альтернатива – AMD FX-4300 (Socket AM3+)

От 3500 до 4000 рублей:

  • Лучший вариант – Intel Core i3-3220 (LGA1155)
  • Альтернатива – AMD FX-4170 (Socket AM3+)
  • Альтернатива – AMD A10-5800K (Socket FM2)

От 4000 до 4500 рублей:

  • Лучший вариант – Intel Core i3-3240 (LGA1155)
  • Альтернатива – AMD FX-6300 (Socket AM3+)
  • Альтернатива – Intel Core i3-4130 (LGA1150)

От 4500 до 6000 рублей:

  • Лучший вариант – AMD FX-8320 (Socket AM3+)
  • Альтернатива – AMD FX-8120 (Socket AM3+)
  • Альтернатива – AMD A10-6800K (Socket FM2)

От 6000 до 7500 рублей:

  • Лучший вариант – Intel Core i5-4440 (LGA1150)
  • Альтернатива – Intel Core i5-3450 (LGA1155)

От 7500 до 10000 рублей:

  • Лучший вариант – Intel Core i5-4670K (LGA1150)
  • Альтернатива – Intel Core i5-3570K (LGA1155)

Свыше 10000 рублей:

  • Лучший вариант ~10000 – Intel Core i7-3770 (LGA1155)
  • Лучший вариант ~11000 – Intel Core i7-4771 (LGA1150)
  • Лучший вариант ~12000 – Intel Core i7-4770K (LGA1150)
  • Альтернатива ~12000 – Intel Core i7-4820K (LGA2011)
  • Лучший вариант ~20000 – Intel Core i7-4930K (LGA2011)
  • Лучший вариант свыше 30000 рублей - Intel Core i7-4960Х Extreme Edition (LGA2011)

Офисный компьютер:

  • Простая рабочая станция - Intel Pentium G3220
  • Производительная рабочая станция - Athlon X4 750K

Домашний компьютер:

  • «Для учебы» - Intel Core i3-3220
  • Мультимедиа (обработка видео и 2D-графики и др. многопоточные вычисления) - AMD FX-8320
  • Игровой компьютер - Intel Core i5-4670K
  • Мощный игровой компьютер - Intel Core i7-4770K
  • САПР и 3D-моделирование - Intel Core i7-4820K
  • Мощность ради мощности - Intel Core i7-4960Х Extreme Edition


Похожие публикации