Телевизоры. Приставки. Проекторы и аксессуары. Технологии. Цифровое ТВ

Сканеры и фотокамеры. Основные технические параметры сканеров

Объяснение термина “разрешающая способность”(далее по тексту "разрешение") - подобно попытке объяснить метрическую систему кому-то выросшему на дюймах и футах. Если Вы не програмист, а информатику в школе Вы "прошли мимо", разобраться с данном вопросе будет очень не просто.

Прежде чем мы займёмся "Разрешением" необходимо выяснить - Что такое пиксель .
Пиксель - это элементарный модуль изображения находящегося в цифровом виде, не имеющий собственного линейного размера. Слово "Пиксель" это сокращение от picture element (элемент изображения). "Файлы цифровых изображений" (не путать с форматом файла) состоят из рядов пикселей, заполняющих высоту файла, таким образом создается двухмерное цифровое изображение с размерностью px*px. Увидеть пиксель нельзя , можно увидеть только отображение информации пикселя устройством вывода. Если открыть в Adobe Photoshop вашу любимую картинку, и увеличить масштаб представления до 1600% вы увидите квадратные участки одного цвета, каждый из них сформирован видеокартой компьютера исходя из информации одного пикселя. При масштабе просмотра 100% - информация каждого пикселя используется для формирования цвета на минимально возможном участке экрана монитора (размер этого участка зависит от выбранной размерности монитора в драйвере видиокарты- так называемое "разрешение монитора") эти точки создают мозаику, которая сливается в непрерывный тон. . Формат цифровых значений, пикселя зависят от модели представления цвета (bitmap, Grayscale, RGB, CMYK, Lab, LCH, и др.), разрядности (глубины) данных (1 бит, 8 бит, 16 бит, 32 бита). Например для битовой карты это -или 0 или 1, для CMYK - информация представляет собой четыре цифры и каждая цифра может принимать значения от 0 до 100 (процент краски). Визуализацию этих значений производят драйверы устройств вывода.
В повседневной жизни пикселем называют всё достаточно "мелкое", которое формирует "нечто целое", например точки печати или, что гораздо чаще - точки изображения на экране монитора, но как только заходит речь о Разрешении такая вольность в отношении единицы информации изображения - пиксель, не допустима. Пиксель можно представить себе, например как на рисунке ниже: "нечто", несущее информацию о изображении в цифровом виде. :)

Еще одна аналогия - таблица Excel, ячейки которой заполнены цифрами, одним числом в случае изображения в градациях серого, три числа будет содержать ячейка в случае RGB изображения, в коментарии такая таблица обязана содержать информацию о цветовом профиле, "глубине" цвета (разрядность данных -бит) - это позволит визуализировать информацию таблицы на мониторе, в коментарии так же нужна информация о разрешении - это позволит распечатать информацию.

Осознание пастулата: Пиксель - это не изображение - это информация о изображении здорово поможет в освоении приемов коррекции изображения - все манипуляции с цифровым изображением производятся над инфомацией о изображении, а не с цветом и тоном изображения.

Единицы измерения разрешения:

Разрешающая способность сканера измеряется в выборках на дюйм (spi )
Разрешение цифровых изображений , измеряется в полученных или предназначеных для вывода пикселях на дюйм (ppi )
Разрешающая способность устройства вывода - в точках на дюйм (dpi ).
Многие путают эти единицы измерения. Сканер и цифровые камеры создают пиксели, не точки. Однако, пиксели в конечном счете будут определять значения точек на выводе. Tочка на выводном устройстве может быть создана исходя из информации:
-каждого пикселя ;
-группы пикселей
-или группа точек создана из группы пикселей .

Например, если изображение имеет длину 300 пикселей и выводится на принтере, разрешение печати которого 300 точек на дюйм (dpi), то на печати длина изображения будет равна одному дюйму, потому что одна точка была создана исходя из информации, которую несёт один пиксель. Возникает следующий вопрос:- " Насколько велика точка печати? " Для устройства печати, способного напечатать 300 точек на дюйм, каждая точка - 1/300 дюйма (0,0846мм). (например цифровая фотопечать в минилабе). Если Вы печатаете файл, у которого сторона имеет 3000 пикселей, на таком устройстве печати, то один дюйм напечатанного изображения будет появляться на выводе для каждой группы из 300 пикселей в файле. Размер отпечатка будет 10 дюймов. Если Вы выводите тот же самый файл для получения слайда, используя устройство записи на фотопленку с разрешающей способностью 1000 точек на дюйм, каждая точка - 1/1000 дюйма (0,0254 мм). С 3000 пикселями в файле, устройство записи на фотопленку произведет один дюйм изображения на слайде для каждой группы в 1000 пикселей. размер отпечатка будет три дюйма. В обоих случаях, есть 3000 пикселей в файле, но на одном устройстве вывода изображение длинной 10 дюймов, а на другом только 3 дюйма. В этой ситуации, устройство записи на фотопленку имеет более высокую разрешающую способность, чем принтер. Цифровые изображения не имеют конкретной физической линейной длинны и ширины.
Привыкайте оценивать величину цифрового изображения по размеру файла в МегаБайтах. Как велико изображение RGB, имеющее 2000 x 3000 пикселя? -в формате файла, не использующего сжатие, на жестком диске оно занимает 17,2 МБ? Какие оно имеет линейные размеры? Вопрос не имеет ответа, пока неизвестно устройство вывода. Создайте новое изображение в Photoshop, задав указаное количество пикселей, Программа позволит Вам при этом, выставить значение в поле Разрешение до 9999 ppi, созданные с разным разрешением файлы будут равноценными по качеству и количеству информации.

Опять вернемся к нашей таблице Excel - мы можем отправить на печать 10 рядов ячеек на страницу или 30 рядов, или 300 (своя рука владыка). Если 10 ячеек на странице смотряться "рыхло" - цифра от цифры далековато и мы можем сказать, что на единицу площади информации мало. В случае печати 300 рядов ячеек на страницу - информации на единицу площади слишком много - мы элементарно не сможем прочитать содержимое - информации избыточно много. А вот 30 рядов ячеек то, что надо, информация складывается в изображение, например такое:.
Плохо, и недостаток, и избыток информации. Но это "плохо" только на печати, пока цифровое изображение в компьютере тег "разрешение" (значение количества пикселей на единицу длинны, которые мы выделяем для печати изображения) качество изображения никак не характеризует.

Никакой демократии

Качество Вывода зависит от качества информации, которую несут пиксели в файле. Для примера: барабанный сканер с максимальной разрешающей способностью 19000 spi может легко отсканировать оригинал с разрешением сканирования 300 spi и он точно соответствовал бы размеру и разрешению сканирования 300spi планшетного сканера за 100 $; однако, различие в качестве огромно. То же можно сказать и о пикселях с цифрых фотоаппаратов разного класса. Даже если одно устройство способно получать большее количество пикселей с дюйма оригинала, чем другое, это не говорит о том, что качество будет выше . Это - особенно касается цифровых камер. Большинство людей, приобретающих цифровые фотоаппараты, критерием выбора для себя определяют количество элементов в матрице камеры и не обращают внимание на другие аспекты, влияющие на качество. Много факторов, которые затрагивают качество: ПЗС и его уровень шума, аналого-цифровой преобразователь, оптика, и форматы сохранения файла - все это влияет на качество получаемого изображения. Например в настоящее время разрешающая способность существующей оптики в существенной мере сдерживает развитие цифровой фотографии.


Рассмотрим небольшое упражнение, иллюстрирующее взаимозависимость размера изображения от разрешения устройства вывода:

  • Запускаем Photoshop.
  • Создаем новый файл, выбирая New в меню File (Cmd/Ctrl N).
  • В всплывающем окне, назовите файл " Испытание Разрешающей способности"
  • Обратите внимание на поля Width и Height. Вы можете определить, в каких единицах работать - в пикселях, дюймах, и т.д. В меню, выберите пиксели, и введите 400 в поле ширины и 500 в поле высоты. Установите в поле Resolution 72 pixels inch.
  • Выберете режим в раскрывающемся меню Mode - Grayscale (возможно создать файл CMYK, RGB, или Grayscale). Позже, Вы уведите, что размер файла в каждом из этих цветовых пространств разный.
  • Список Background Contents позволяют Вам устанавливать цвет фона в новом документе. Оставьте его белым (White).
  • Щелкаем кнопкой OK.

Монитор, тоже устройство вывода

Итак Вы знаете, как работать в пикселях и как использовать диалоговое окно Image size Photoshop, Вы также знаете, как изменить разрешение файла. Вы можете задать вопрос, почему 72 точки на дюйм – так часто встречающееся разрешение. Это, потому что раньше большинство экранов монитора имело разрешающую способность 72 точки на дюйм (как определить разрешение своего монитора написано чуть ниже) и это – устройство вывода, как и принтер. Вообразите, что произойдет, если Вы посмотрите файл 2000 x 3000- пикселя в Photoshop. Так как вывод осуществляется - например 72 точки на дюйм, изображение при 100 процентах настолько большое, что Вы видите только часть полного изображения. Это, потому что каждый пиксель в файле будет отображен одной точкой на экране, делая изображение для редактирования неудобным. К счастью, Photoshop позволяет Вам уменьшить масштаб изображения, чтобы видеть его полностью. Чтобы делать это, однако, программное обеспечение должно оперативно расчитать интерполяцию для вывода на монитор. Когда Вы уменьшаете масштаб менее 100%, Вы видите изображение неточным, ведь каждая точка на экране сформирована исходя из информации нескольких пикселей изображения. Поэтому при работе в Photoshop некоторые операции необходимо делать при 100%, чтобы видеть все пиксели, которые будут использоваться для печати, например когда Вы поднимаете резкость изображения.

Для того, что бы узнать разрешение экрана Вашего монитора создайте новый файл с размерами 1 на 1 дюйм и задайте разрешение 100 ppi. Установите масштаб просмотра 100%, пользуясь обычной линейкой (деревянной или пластиковой, рулеткой или метром- вообщем вешью, а не инструментом компьюторной программы), ползунком в палитре Navigator изменяйте масштаб созданного изображения пока его длинна не станет равной одному дюйму (2,54 см). Полученное значение масштаба равно разрешению экрана Вашего монитора. Его можно выставить в Preferences->Units&Rules->Screen Resolution, что позволит по команде View->Print Size получать размеры изображения на экране равные размерам на отпечатке.

Количество "каналов Цвета - в одном дюйме"

Файл 1000 x 1000 - пикселей занимает большее количество дискового пространства, чем файл 100x100 - пикселей, но файлы могут быть составлены из цветовых каналов, что тоже влияет на физический размер файла, при равном разрешении. Например, размер полутонового файла 100x100 пиксель будет составлять одну треть файла RGB размером 100x100 - пикселей. Дело в том, что файл RGB имеет три цветовых канала (красный, зеленый, синий), один для каждого цвета. Файл CMYK будет большим на одну треть файла RGB, . Зная размеры файла в пикселях, Вы можете всегда вычислить физический размер файла в Мб, для любого режима цветового воспроизведения. Пробуйте это упражнение: Если Вы имеете файл, у которого имеется 1000 x 1000 пикселей, найдите площадь 1000 умножить на 1000 равно - 1,000,000. Это - общее количество пикселей в файле. Умножьте полученное число на количество цветовых каналов. Для файла RGB будет: 1000000x3=3000000 байт. Теперь, 3,000,000 разделите на 1024, чтобы перевести в килобайты (в одном килобайте - 1024 байта) и Вы получите 2929 Кб. Разделите еще на 1024, чтобы получить мегабайты, и Вы получите 2.86Mб. (Ещё о каналах цифрового изображения).

Покупатель осторожней Вас обманывают

Вы, возможно, видели рекламу и технические описания планшетных сканеров, в них изготовитель соблазняет Вас большими цифрами разрешающей способности. Вы естественно видели спецификацию 600 x 1200 точек на дюйм? Вы узнали, что точки на дюйм - неправильный термин (сканер имеет параметр – количество выборок на дюйм – spi), но это – незначительная неточность, по сравнению с фактом, что этот сканер может сканировать с оптической разрешающей способностью только 600 ppi. Датчик в планшетном сканере - это строка ПЗС (матрица приборов с зарядовой связью), от которой полностью зависит разрешение. В этом случае, датчик ПЗС имеет 600 трёхцветных элементов в пределах одного дюйма, способных создавать 600 пикселей в дюйме. Что же делает второе число в техническом описании? Он характеризует шаговый двигатель сканера, который перемещает ПЗС вверх и вниз по ложу сканера. Шаговый двигатель может перемещать матрицу с шагом 1/1200 дюйма. Что происходит при сканировании на 1200 ppi. ПЗС может фиксировать максимум только 600 пикселей в дюйме, при перемещении с шагом 1/1200 дюйма выборки получаются прямоугольной формы и программное обеспечение сканера вычисляет из полученых выборок значение пикселя, которое будет записано в файл изображения. Часто встречается рекомендация сканировать с разрешением кратным максимальному оптическому разрешению сканера - это было бы справедливо только в одном случае - физическое отключение "неиспользуемых" элементов ПЗС, что не реализовано ни в одном сканере. Поэтому сканируйте с разрешением необходимым для получения нужных Вам размеров файла (не превышающим максимальное оптическое разрешение сканера).

Делать вставки в текст чужой рукописи или Нет?

Если Вы должны создать файл требующий разрешение сканирования большее, чем может ваш сканер, Вы можете позволить сканеру делать "вставки в текст чужой рукописи", или же Вы можете делать "вставки в текст чужой рукописи"(интерполировать) в Photoshop или другой программе? Всё зависит от алгоритма интерполяции, который использует программное обеспечение сканера. Как правило Бикубическая (Bicubic) интерполяция (и его вариант с сглаживанием), используемая в Photoshop - обеспечивает лучший по качеству результат. Существуют программы использующие сложные математическиев алгоритмы интерполяции, результаты работы которых, немного лучше, чем Photoshop. Немногие производители сканеров сообщат Вам тип интерполяции - Bicubic, или более быстрый, но менее качественный алгоритм. Я рекомендую следующее испытание: сканируйте оригинал с максимальной оптической разрешающей способностью сканера, и сделайте интерполяцию в Photoshop на 400%. Отсканируйте ещё раз не изменяя ничего кроме масштаба – увеличьте его в четыре раза. Откройте оба изображения в Photoshop . Перенесите слой Background с нажатой клавишей Shift в окно второго изображения и измените режим наложения слоя на Difference. Если изображения нет и экран абсолютно черный, то различий в изображениях нет, если же различия есть, то надо определить какое изображение лучше - в восьми случаях из десяти изображение увеличенное в Photoshop – лучше. Но программы сканирования постоянно совершенствуются и всегда не будет лишним проверить. Вернемся к нашей задаче -

С каким разрешением сканировать изображение для различных условий печати?

Качественное программное обеспечение сканера вычисляет необходимое разрешение сканирования по представленным ниже формулам уже интегрированным в программу. Все, что Вы должны сделать: ввести желаемый линейный размер распечатки или масштаб увеличения; разрешение вывода (значение тега - разрешение, который запишется в файл) или повышающий коэффициент и линиатуру растра. Программное обеспечение позаботится обо всем остальном. Для тех из Вас, кто хотел бы к изучить точные формулы, здесь - все, что Вам необходимо для вычисления разрешения сканирования, для наиболее часто используемых процессов печати. Для принтеров, которые могут воспроизводить непрерывные тона (Подобно термосублимационному, thermosublimation, принтеру), Вы можете вычислять необходимое разрешение, используя следующий метод:
Разрешение сканирования =Разрешающая способность печати x Коэффициент масштабирования
Необходимые размеры определены, и они другие, чем у оригинала. Например: Вам необходимо сканировать оригинал, который 1x1 дюйма. Оригинал слишком маленький, так что Вы решаете увеличивать его до 3x3 дюйма и напечатать "это", на вашем принтере у которого разрешение 300 dpi . Следующие результаты вычисления:
Разрешение сканирования = 300 dpi x 3=900 ppi

Сканирование для офсетной печати.

История та же самая, - Вы хотите сканировать полутоновый или цветной оригинал. Если Вы хотите печатать изображение например для использования в журнале; следующая формула для вычисления разрешения сканирования:
Scan Resolution = Printout’s Screen Ruling x Screening Factor x Sizing Factor
Разрешение сканирования=Линиатура печати*Повышающий коэффициент*Коэф. масштабирования

В офсетной печати информации одного пикселя изображения не достаточно для получения одной растровой точки поэтому, Вы должны включить коэффициент (Screening Factor) в уравнение. Этот коэффициент увеличивает разрешение изображения и позволяет устройству вывода (Rip"у - растровому процессору) вычислить значения для растровых точек более точно. Если Вам не знакомы иные значения для конкретных условий печати конкретных сюжетных типов изображений - используйте Коэффициент равный двум. Тогда цвет каждой растровой точки на печати будет рассчитан, исходя из значений четырех пикселей (2x2 матрица) (в действительности расчёт гораздо сложнее, чем просто осреднение значений пикселей, предоставленных для формирования единицы длинны отпечатка, тут учитывается много факторов, таких, как углы поворота растра, и значение имеет в первую очередь количество пикселей необходимых для формирования одной растровой точки), . Вернемся к нашему примеру так, если мы все еще хотим напечатать наше 1x1 дюймовое изображение размерами 3x3 дюймов, но на сей раз для целей офсетной печати при линиатуре печати 150 Lpi, мы должны вычислить разрешение сканирования:
Линиатура = 150 lpi
Screening Factor = 2
Масштаб увеличения = 3
Разрешение сканирования = 150 lpi x 2 x 3 = 900 ppi

Рекомендации по разрешению изображений для различных технологий вывода изображения (минимум-максимум)

  1. Монитор - разрешение значение не имеет - размер определяется пиксельным размером изображения
  2. Домашний принтер - 180-360ppi
  3. Мини фотолаборатория - 150-300ppi - это технология печати "непрерывным тоном" - каждая точка печати формируется информацией одного пикселя - никакого растрирования, как в остальных технологиях печати, здесь нет. А глаз человека не в состоянии разглядеть с растояния просмотра 20-30см точки расположенные с частотой выше 150 точек в дюйме.
  4. Офсетная печать c высокой линеатурой печати (150-175lpi)- 240-350ppi выбор зависит от качества изображения и его сюжета, например высокочастотные изображения (имеющие высокую и контрастную детализацию) могут иметь (с пользой для качества) разрешение до 1200ppi, а большинство фото сделаных цифромыльницей можно оставить с разрешением 240ppi - значения выше в качество воспроизведения ничего не добавят.
  5. Цифровая широкоформатная печать - требуемое разрешение целиком зависит от разрешения печати (количество капель-точек на единице длинны) плотера и равно четвёртой части от него, например при разрешении печати 600dpi - изображению достаточно иметь разрешение 150ppi, что соответствует качеству интерьерной широкоформатной печати (с размерами до 3 метров). Для уличных банеров разрешение нужно не более 72ppi, часто достаточно 24-36ppi. А вот растояние просмотра, на которое часто ссылаются, объясняя необходимое разрешение изображение для банера, играет роль при выборе необходимого оборудования - исходя из размера необходимой точки печати выбирается плотер (а не тот, что есть или стоит в конторе за углом) и только выбрав нужное оборудование можно определить по его характеристикам необходимое и достаточное разрешение изображения.

  6. Для продолжения знакомства с кругом знаний, необходимых цветокорректору в повседневной работе смотри список статей в левой колонке сайта.

Разрешающая способность

Разрешающая способность, или разрешение, - один из наиболее важных параметров, характеризующих возможности сканера. Самая распространенная единица измерения разрешающей способности сканеров - количество пикселов на один дюйм (pixels per inch , ppi ). Не следует отождествлять ppi c более известной единицей dpi (dots per inch - количество точек на дюйм), которая используется для измерения разрешающей способности растровых печатающих устройств и имеет несколько иной смысл.

Различают оптическое и интерполированное разрешение. Величину оптического разрешения можно вычислить, разделив количество светочувствительных элементов в сканирующей линейке на ширину планшета. Несложно сосчитать, что количество светочувствительных элементов у рассматриваемых нами сканеров, имеющих оптическое разрешение 1200 ppi и формат планшета Legal (то есть ширину 8,5 дюйма, или 216 мм), должно составлять не менее 11 тыс.

Говоря о сканере как об абстрактном цифровом устройстве, нужно понимать, что оптическое разрешение - это частота дискретизации, только в данном случае отсчет идет не по времени, а по расстоянию.

В табл. 1 приведены требуемые значения разрешающей способности для решения наиболее распространенных задач. Как можно заметить, при сканировании в отраженном свете в большинстве случаев вполне достаточно разрешения в 300 ppi, а более высокие значения требуются либо для масштабирования оригинала на больший размер, либо для работы с прозрачными оригиналами, в частности с 35-миллиметровыми диапозитивами и негативами.

Таблица 1. Величины разрешающей способности для решения наиболее распространенных задач

Применение

Требуемое разрешение, ppi

Сканирование в отраженном свете

Иллюстрации для Web-страниц

Распознавание текста

Штриховая графика для печати на монохромном принтере

Черно-белое фото для печати на монохромном принтере

Цветное фото для печати на струйном принтере

Текст и графика для передачи по факсу

Цветное фото для офсетной печати

Сканирование в проходящем свете

35-миллиметровая пленка, фото для Web-страниц

35-миллиметровая пленка, фото для распечатки на струйном принтере

60-миллиметровая пленка, фото для Web-страниц

60-миллиметровая пленка, фото для распечатки на струйном принтере

Многие производители, стремясь привлечь покупателей, указывают в документации и на коробках своих изделий значение оптического разрешения 1200*2400 ppi. Однако вдвое большая цифра для вертикальной оси означает не что иное, как сканирование с половинным вертикальным шагом и дальнейшей программной интерполяцией, так что в данном случае оптическое разрешение этих моделей фактически остается равным первой цифре.

Интерполированное разрешение - это повышение количества пикселов в отсканированном изображении за счет программной обработки. Величина интерполированного разрешения может во много раз превышать величину оптического разрешения, однако следует помнить, что количество информации, полученной с оригинала, будет таким же, как и при сканировании с оптическим разрешением. Другими словами, повысить детальность изображения при сканировании с разрешением, превышающим оптическое, не удастся.

Разрядность

Разрядность, или глубина цвета, определяет максимальное число значений, которые может принимать цвет пиксела. Иначе говоря, чем выше разрядность при сканировании, тем большее количество оттенков может содержать полученное изображение. Например, при сканировании черно-белого изображения с разрядностью 8 бит мы можем получить 256 градаций серого (2 8 = 256), а используя 10 бит - уже 1024 градации (2 10 = 1024). Для цветных изображений возможны два варианта указываемой разрядности - количество бит на каждый из базовых цветов либо общее количество бит. В настоящее время стандартом для хранения и передачи полноцветных изображений (например, фотографий) является 24-битный цвет. Поскольку при сканировании цветных оригиналов изображение формируется по аддитивному принципу из трех базовых цветов, то на каждый из них приходится по 8 бит, а количество возможных оттенков составляет немногим более16,7 млн. (2 24 = 16 777 216). Многие сканеры используют большую разрядность - 12, 14 или 16 бит на цвет (полная разрядность составляет соответственно 36, 42 или 48 бит), однако для записи и дальнейшей обработки изображений эта функция должна поддерживаться применяемым программным обеспечением; в противном случае полученное изображение будет записано в файл с 24-битной разрядностью.

Следует отметить, что более высокая разрядность далеко не всегда означает более высокое качество изображения. Указывая 36- или 48-битную глубину цвета в документации или рекламных материалах, производители зачастую умалчивают о том, что часть битов используется для хранения служебной информации.

Динамический диапазон (максимальная оптическая плотность)

Как известно, более темные участки изображения поглощают большее количество падающего на них света, чем светлые. Величина оптической плотности показывает, насколько темным является данный участок изображения и, следовательно, какое количество света поглощается, а какое отражается (или проходит насквозь в случае прозрачного оригинала). Обычно плотность измеряется для некоего стандартного источника света, имеющего заранее определенный спектр. Значение плотности вычисляется по формуле:

где D - величина плотности, R - коэффициент отражения (то есть доля отражаемого или проходящего света).

Например, для участка оригинала, отражающего (пропускающего) 15% падающего на него света, величина плотности составит log(1/0,15) = 0,8239.

Чем выше максимальная воспринимаемая плотность, тем больше динамический диапазон данного устройства. Теоретически динамический диапазон ограничен используемой разрядностью. Так, восьмибитное монохромное изображение может иметь до 256 градаций, то есть минимальный воспроизводимый оттенок составит 1/256 (0,39%), следовательно динамический диапазон будет равен log(256) = 2,4. Для 10-битного изображения он будет уже немного больше 3, а для 12-битного - 3,61.

Фактически это означает, что сканер с большим динамическим диапазоном позволяет лучше воспроизводить темные участки изображений или просто темные изображения (например, передержанные фотоснимки). Следует оговориться, что в реальных условиях динамический диапазон оказывается меньше вышеуказанных значений из-за влияния шумов и перекрестных помех.

В большинстве случаев плотность непрозрачных оригиналов, сканируемых на отражение, не превышает значения 2,0 (что соответствует участку с однопроцентным отражением), а типичное значение для высококачественных печатных оригиналов составляет 1,6. Слайды и негативы могут иметь участки с плотностью выше 2,0.

Источник света

Источник света, используемый в конструкции того или иного сканера, в немалой степени влияет на качество получаемого изображения. В настоящее время используются четыре типа источников света:

  1. Ксеноновые газоразрядные лампы . Их отличают чрезвычайно малое время включения, высокая стабильность излучения, небольшие размеры и долгий срок службы. Но они не очень эффективны с точки зрения соотношения количества потребляемой энергии и интенсивности светового потока, имеют неидеальный спектр (что может вызвать нарушение точности цветопередачи) и требуют высокого напряжения (порядка 2 кВ).
  2. Люминесцентные лампы с горячим катодом . Эти лампы обладают наибольшей эффективностью, очень ровным спектром (которым к тому же можно управлять в определенных пределах) и малым временем разогрева (порядка 3-5 с). К отрицательным сторонам можно отнести не очень стабильные характеристики, довольно значительные габариты, относительно небольшой срок службы (порядка 1000 часов) и необходимость держать лампу постоянно включенной в процессе работы сканера.
  3. Люминесцентные лампы с холодным катодом . Такие лампы имеют очень большой срок службы (от 5 до 10 тыс. часов), низкую рабочую температуру, ровный спектр (следует отметить, что конструкция некоторых моделей этих ламп оптимизирована для повышения интенсивности светового потока, что негативно отражается на спектральных характеристиках). За перечисленные достоинства приходится расплачиваться довольно большим временем прогрева (от 30 с до нескольких минут) и более высоким, чем у ламп с горячим катодом, энергопотреблением.
  4. Светодиоды (LED). Они применяются, как правило, в CIS-сканерах. Цветодиоды обладают очень малыми габаритами, небольшим энергопотреблением и не требуют времени для прогрева. Во многих случаях используются трехцветные светодиоды, с большой частотой меняющие цвет излучаемого света. Однако светодиоды имеют довольно низкую (по сравнению с лампами) интенсивность светового потока, что снижает скорость сканирования и увеличивает уровень шума на изображении. Весьма неравномерный и ограниченный спектр излучения неизбежно влечет за собой ухудшение цветопередачи.

Шум

Как уже упоминалось выше, сканер с 24-битной разрядностью теоретически способен воспроизводить даже довольно темные оригиналы. Однако на практике этому мешают некоторые факторы, обусловленные применямой технологией получения изображения, и в первую очередь регулярный и случайный шум . Рассмотрим эти шумы подробнее.

Увеличенные фрагменты оригинала (справа) и его отсканированного изображения (слева). На левом фрагменте заметен случайный шум

Увеличенные фрагменты оригинала (справа) и его отсканированного изображения (слева). На левом фрагменте заметны проявления регулярного шума в виде вертикальных полос

Случайный шум проявляется в виде «снега», гранулярности или хаотически расположенных инородных точек на изображении и возникает как вследствие нестабильности работы полупроводниковых приборов (при изменении температуры и с течением времени), так и в результате искажений, вносимых электронными компонентами. Наиболее заметен такой шум на темных областях изображения, поскольку при равном абсолютном уровне шума отношение «сигнал/шум» на них будет гораздо меньше, чем на светлых участках. Для минимизации случайного шума перед сканированием выполняется процедура калибровки, во время которой измеряются пороговые значения и смещение базового напряжения для каждого светочувствительного элемента.

Регулярный шум возникает вследствие перекрестных помех (наводимых с соседних светочувствительных элементов), кратковременных изменений базового напряжения в ПЗС-матрице, воздействия высокочастотных электрических полей, изменения яркости источника света и т.п. Регулярный шум, в отличие от случайного, очень хорошо заметен, поскольку проявляется в виде горизонтальных, вертикальных либо диагональных полос.

Поскольку видимость (для сканера) цветов и оттенков на бумаге определяется цветом освещения, белый цвет лампы представляется нейтральным и универсальным (позволяющим видеть точки любого цвета). Однако белые лампы быстро теряют яркость и в сканерах, рассчитанных на продолжительное интенсивное сканирование применяют зеленые фосфорные лампы. При этом сканер проявляет тенденцию к подавлению светло-зеленых и светло-голубых цветов на странице. Этот эффект иногда даже используется при обработке форм (распознаваемые формы печатают на светло-голубых или зеленых бланках). Но исторически многие бумаги в сфере страхования и здравоохранения были изготовлены на розовой или красной бумаге, поэтому широкое распространение получили красные лампы для подавления соответствующего фона. В настоящее время все изготовители производственных сканеров допускают заказ устройства с лампой необходимого цвета или заказ дополнительно одной (нескольких) цветных ламп (или светофильтров) для улучшенного сканирования в конкретных обстоятельствах.

Основные технические параметры сканеров

Разрешающая способность

Разрешающая способность, или разрешение, -- один из наиболее важных параметров, характеризующих возможности сканера. Наиболее распространенная единица измерения разрешающей способности сканеров -- количество пикселов на один дюйм (pixels per inch, сокращенно ppi ). Не следует отождествлять ppi с более распространенной аббревиатурой dpi (dots per inch, количество точек на дюйм). Последняя единица используется для измерения разрешающей способности растровых печатающих устройств и имеет несколько иной смысл.

Различают оптическое и интерполированное разрешение. Величину оптического разрешения можно вычислить, разделив количество светочувствительных элементов в сканирующей линейке на ширину планшета. Нетрудно сосчитать, что количество светочувствительных элементов у сканера, имеющего оптическое разрешение 600 ppi и формат планшета Legal (то есть шириной 8,5 дюйма, или 216 мм) должно составлять не менее 5100, а при разрешении 1200 ppi -- 11 000! Говоря о сканере как об абстрактном цифровом устройстве, важно понимать, что оптическое разрешение -- это частота дискретизации , только в данном случае отсчет идет не по времени, а по расстоянию.

В табл. 1 приведены требуемые значения разрешающей способности для наиболее распространенных задач. Как вы можете заметить, при сканировании в отраженном свете в большинстве случаев более чем достаточно разрешения в 300 ppi, а более высокие значения требуются в основном для работы с прозрачными оригиналами, в частности 35-миллиметровыми диапозитивами и негативами.

Многие производители, стремясь привлечь покупателей, указывают в документации и на коробках своих изделий значение оптического разрешения 600x1200 ppi (или соответственно 1200x2400). Однако вдвое большая цифра для вертикальной оси означает не что иное, как сканирование с половинным вертикальным шагом и дальнейшей программной интерполяцией, так что в данном случае оптическое разрешение этих моделей фактически остается равным первой цифре.

Интерполированное разрешение -- это повышение количества пикселов в отсканированном изображении за счет программной обработки. Величина интерполированного разрешения может во много раз превышать величину оптического разрешения, однако следует помнить, что количество информации, полученной с оригинала, будет таким же, как и при сканировании с оптическим разрешением. Иными словами, повысить детальность изображения при сканировании с разрешением, превышающим оптическое, не удастся.

Сканер, как отмечалось выше, обладает разрешающей способностью, определяемой его конструктивными особенностями. Она может быть аппаратной (оптической) или интерполяционной (реконструированной вычислительными средствами). Разрешающая способность является максимальной характеристикой, определяемой техническими особенностями сканера. Однако при сканировании изображения вы можете произвольно выбрать, с каким разрешением это следует делать в данном конкретном случае. Установленное разрешение сканирования может быть меньше или равно аппаратному (оптическому) разрешению сканера, но может и превышать его. В последнем случае речь может идти только об интерполяционном разрешении. При установленном интерполяционном разрешении сканирования кроме собственно аппаратных средств привлекаются программные преобразования. Последние могут быть хорошими или плохими: все зависит от алгоритма преобразования и исходного изображения.

От выбора разрешения сканирования зависит качество полученного изображения, занимаемый им объем памяти, а также скорость сканирования. Качество изображения это, прежде всего, его четкость, плавность цветовых переходов. Другими словами, хороший результат сканирования не должен выглядеть заметно хуже, чем оригинал.

Чем меньше разрешение, тем меньше объем и временные затраты на сканирование и наоборот. Однако с качеством результата дело обстоит сложнее. Здесь напрашивается аналогия с выбором рыболовной сети. Какую сеть выбрать - с мелкими или крупными ячейками, зависит от размеров рыбы, которую вы хотите поймать. Сканер - это устройство, извлекающее информацию, содержащуюся в изображении. Нельзя получить информации больше, чем ее было в оригинале, но ее описание можно сделать избыточным. Избыточные описания графической информации обычно выражаются в чрезмерно больших объемах соответствующих файлов. В идеале нам нужно настроить сканер так, чтобы извлечь из оригинала как можно больше графической информации, или, по крайней мере, не меньше, чем нужно.

Умение правильно выбирать разрешение сканирования приходит с опытом. Однако эксперименты можно упорядочить, чтобы опытность пришла побыстрее. Изображения для простоты можно разделить на два основных типа: фотографии и рисунки. Изображения типа фотографии (фотоснимки, живопись и т. п.) характеризуются большим количеством оттенков и плавностью их переходов, а рисунки (плакаты, чертежи, гравюры и т. п.) - относительно небольшим количеством оттенков, наличием контуров и повышенной контрастностью. Таким образом, в класс фотографий попадают не только фотоснимки, а к классу рисованной графики относятся не только изображения, созданные карандашом, кистью или пером. Иногда встречаются изображения, которые трудно с уверенностью отнести к тому или иному типу. В этом случае попробуйте и так, и эдак. Далее, возьмите несколько картинок каждого типа и отсканируйте их при различных разрешениях. Начните с минимального значения 72 ppi, увеличивая его с некоторым шагом до величины оптического разрешения сканера. В процессе эксперимента нужно зафиксировать две величины разрешения:

  • начиная с которой качество изображения становится приемлемым;
  • начиная с которой качество изображения практически не изменяется.

Усреднив полученные данные для каждого типа изображений, вы получите значение разрешения, которое следует устанавливать при первой попытке сканирования. При сканировании дело обстоит примерно так же, как и при использовании профессионального фотоаппарата, когда необходимо вручную установить выдержку, диафрагму и фокусное расстояние (резкость). Опытный фотограф быстро оценивает объект съемки и устанавливает нужные параметры своего аппарата. Однако профессионал сделает несколько снимков одного и того же объекта при немного различающихся настройках фотокамеры. Аналогично, при сканировании нередко приходится предпринимать несколько попыток.

Устанавливая разрешение сканирования, следует также учитывать, будет ли изображение увеличено в размерах при показе его на экране монитора или при выводе на печать. С увеличением размеров (т. е. при растяжении) качество изображения, вообще говоря, может ухудшиться. На этот случай создают изображение с некоторым запасом разрешения. Так, если предполагается увеличивать картинку в два раза, то и разрешение должно быть в два раза больше, чем то, которое было достаточным для исходных размеров. Сдругой стороны, если предполагается выводить на монитор или печать уменьшенное изображение, то, возможно, разрешение следует соответственно уменьшить. Маленькие изображения должны иметь небольшое разрешение. Эта ситуация часто возникает в Web-дизайне, где одна и та же картинка часто представляется в двух вариантах: маленькая (thumbnail, миниатюра) - с низким разрешением, и большая - с высоким разрешением.

Если ваш компьютер обладает достаточно большой памятью и затраты времени на сканирование для вас не критичны, то можно рекомендовать установку разрешения, равного аппаратному (оптическому) разрешению сканера. Затем, если потребуется, разрешение полученного изображения можно уменьшить средствами графического редактора. В Photoshop для этого используется команда Image>Image Size (Изображение>Размер изображения). Однако увеличение разрешения средствами графического редактора не повышает качество изображения. При уменьшении разрешения (downsample) из изображения удаляются пикселы и, таким образом, уменьшается количество графической информации. При увеличении разрешения графический редактор добавляет пикселы, используя для вычисления их значений некоторый алгоритм интерполяции (учета значений соседних пикселов).

Рис. 123. Окно установки размеров и разрешения изображения в Photoshop

Вообще говоря, оптимизировать окончательный вариант изображения лучше средствами мощного графического редактора, такого как Photoshop. Работа с графикой с точки зрения дизайнера (художника) обычно происходит в пространстве графического редактора, а не средств программного обеспечения сканера. Но это не означает, что программные средства сканера (TWAIN-интерфейса) должны быть навсегда забыты. Хотя они и создавались главным образом для того, чтобы пользователь мог работать со сканером, не завися от имеющегося у него пакета графических программ, иногда их можно эффективно применять еще до того, как Photoshop проявит всю свою мощь.

В следующей таблице приведены в качестве примера затраты памяти при сканировании изображения размером 4x4 дюйма (11x11 см) в различных режимах и при различных разрешениях.

Тип изображения Объем изображения при различных разрешениях
100 ppi 150 ppi 300 ppi 600 ppi
Color 469 Кбайт 1 Мбайт 4,12 Мбайт 16,5 Мбайт
Gray 156 Кбайт 352 Кбайт 1,37 Мбайт 5,5 Мбайт
Artline 19,5 Кбайт 44 Кбайт 175 Кбайт 703 Кбайт

В заключение разговора о разрешении сканирования напомним обстоятельства, которые приходится дополнительно учитывать при выборе разрешения. Во-первых, если отсканированное изображение предназначается для вывода на печать с помощью лазерного или струйного принтера, то устанавливаемое разрешение может быть в 3-4 раза меньше разрешения принтера. Это справедливо в первую очередь для цветных или полутоновых (в оттенках серого) изображений. Для изображений типа Artline или Halftone разрешение сканирования следует выбирать, по возможности, равным разрешению принтера. Например, если у вас обычный струйный принтер с разрешением 300 ppi, то. попробуйте сначала отсканировать изображение с разрешением 75 ppi. Если результат окажется неудовлетворительным, увеличьте разрешение сканирования в 2 раза. Во-вторых, разрешение часто приходится менять при сканировании изображений из высококачественных печатных изданий. Причина тому так называемый муар - эффект взаимодействия нескольких периодических структур (в данном случае, дискретных структур сканирования и печатного растра). Часто этот побочный оптический эффект устраняется выбором более высокого разрешения сканирования. Подавление муара более подробно будет рассмотрено ниже. В-третьих, при выборе начального и, при необходимости, последующих значений разрешения сканирования следует стремиться к тому, чтобы выбранное разрешение было кратно оптическому разрешению сканера, деленному на целую степень двойки:

Устанавливаемое разрешение = Оптическое разрешение: 2 i , где i = 0, 1,2, 3,...

Например, если оптическое разрешение сканера равно 600 ppi, то устанавливаемое разрешение сканирования должно быть как можно ближе к 600, 300, 150, 75 ppi. Такой выбор способствует достижению наибольшей четкости результата сканирования.

Сканеры и цифровые фотокамеры являются основным источником оцифрованной растровой графической информации (в статической форме), приспособленной для дальнейшей обработки в ЭВМ.

Сканеры, классификация и устройство

Классы сканеров. Сканер - устройство для ввода графической растровой информации в ЭВМ. Список приложений сканера очень обширен и на сегодняшний день сложились и производятся следующие разновидности этих устройств (рис. 4.6):

  • высококачественные барабанные сканеры, которые способны обрабатывать как прозрачные, так и непрозрачные изображения - от 35-мм пленок до материалов размером 16 футов на 20 дюймов с высоким (свыше 10 000 тнд) разрешением;
  • планшетные настольные сканеры универсального назначения;
  • компактные сканеры документов, предназначенные исключительно для оптического считывания и распознавания потоков документов;
  • специальные фотосканеры, которые работают, перемещая фотографию относительно неподвижного источника света;
  • сканеры слайдов или негативов, работающие с прозрачными изображениями;

Рис. 4.6.

а - планшетный (flatbed) сканер Epson Perfection 3490; б - сканер документов (pass-through scanner) Kodak i30; в - сканер кинофильмов (35 mm film scanner) Nikon Coolscan 5000 ED; г - ручной сканер Mustek

Ручные сканеры для использования на небольшом пространстве стола.

Однако планшетные сканеры - наиболее универсальные и популярные изделия. Они способны снимать цветовые изображения, документы, страницы из книг и журналов, а также прозрачные фотопленки.

Датчики сканеров

Датчик изображения обычно реализуется по одной из трех технологий:

  • фотоэлектронный умножитель (ФЭУ, или photomultiplier tube - РМТ) - технология, унаследованная от барабанных сканеров;
  • прибор с зарядовой связью (ПЗС или charge-coupled device - CCD), - датчик, типичный для настольных сканеров;
  • контактный сенсор изображения (contact image sensor - CIS) - более современная технология, которая интегрирует функции и позволяет создавать сканеры более компактных конструкций.

Технология фотоэлектронных умножителей. ФЭУ - технология датчиков высокопроизводительных цветных барабанных сканеров, которые используются обычно для подготовки матриц цветной полиграфии. Дорогостоящие и тяжелые в обслуживании, они были основными устройствами ввода изображений в ЭВМ до появления настольных сканеров.

Оригинал изображения здесь тщательно закрепляется на цилиндрическом барабане, который начинает вращаться с высокой скоростью. Каретка с датчиками и осветителями начинает перемещаться вдоль изображения. Управлять разрешением или размером изображения можно, подбирая скорость движения каретки, оптическую силу линз и радиус барабана.

ФЭУ-сканеры имеют два источника освещения, один для сканирования в отраженном свете, другой - для прозрачных оригиналов. Свет подсветки расщепляется на три луча, которые проходят через светофильтры (красный, зеленый и синий), а затем попадают на трубку фотоумножителя, где световая энергия преобразуется в электрический сигнал. ФЭУ-сканеры имеют намного более высокую светочувствительность и более низкий уровень шума, чем сканеры ПЗС, и, следовательно, способны к


Рис. 4.7.

хорошей передачей тонов, будучи менее восприимчивыми к ошибкам в преломлении или фокусировке света, чем их планшетные коллеги (рис. 4.7).

Однако барабанные сканеры медленнее и дороже, чем сканеры с ПЗС. В настоящее время они обычно используются только в специализированных высокопроизводительных приложениях.

Прибор с зарядовой связью (ПЗС). Технология прибора с зарядовой связью, которая лежит в основе планшетных сканеров, используется также в таких устройствах, как телефаксы и цифровые камеры. Изображение помещается перед кареткой, которая состоит из источника освещения и массива датчиков (рис. 4.8). Свет от трубки поступает на датчики, которые считывают опти-


Рис. 4.8.

1 - оригинал; 2 - источник света; 3 - неподвижное зеркало; 4 - движущееся зеркало; 5 - линза; 6 - линейка ПЗС; 7 - на АЦП и выход

ческие данные (например, ПЗС), затем проходит призмы, линзы и другие оптические компоненты. Подобно линзам очков или лупам, эти элементы могут весьма различаться по качеству. Высококачественный сканер использует точную, просветленную оптику со светофильтрами исправления цвета, изготовленную из стекла, в то время как в дешевых моделях применяются пластмассовые компоненты.

Головка устанавливается на каретке, которая перемещается вдоль оригинала изображения. Хотя движение кажется непрерывным, перемещение происходит дискретными шагами (в доли дюйма), и в каждой паузе осуществляется считывание информации. В случае планшетного сканера головка управляется шаговым двигателем - устройством, которое поворачивает ось в точности на заданный угол каждый раз, когда подан электрический импульс.

Интенсивность света, отраженного или прошедшего сквозь изображение и собранного датчиком, преобразуется в напряжение, пропорциональное световой интенсивности. Преобразование аналог-код - процесс, чувствительный к электрическим помехам и шумам в системе. Чтобы сохранить изображения, лучшие сканеры используют электрически изолированный конвертер аналог-код, удаленный от основной схемы сканера. Однако эта конструкция недешева, поэтому в более простых моделях конвертер встроен в основную монтажную схему сканера.

Контактный сенсор (CIS). Это относительно новая технология датчиков, которая начала появляться на рынке планшетных сканеров в конце 1990-х гг. Сканеры этой системы используют компактные банки красных, зеленых и синих светодиодов в сочетании с линейкой датчиков ПЗС, помещенных чрезвычайно близко к исходному изображению. В результате получен сканер, который меньше, легче, дешевле и экономичнее чем, традиционное устройство на основе ПЗС, однако эта технология еще далека от совершенства.

Показатели эффективности сканера

Рассмотрим основные характеристики изображений, процессов их создания и обработки. Механизм датчика - не единственный фактор, который задает эффективность сканера. Следующие показатели являются важными аспектами спецификации устройства:

  • разрешающая способность;
  • разрядная глубина;
  • динамический диапазон.

Разрешающая способность сканера. Разрешающая способность описывает точность устройства и обычно измеряется в точках на дюйм (тнд) или ppi (points per inch). Средняя разрешающая способность недорогого настольного сканера в конце 1990-х гг. составляла 300 х 300.

Типичный планшетный сканер использует элемент ПЗС для каждого пикселя, так что например, для настольного сканера, имеющего горизонтальную оптическую разрешающую способность 600 тнд и максимальную ширину документа 8,5", требуется массив из 5100 (5100 = 600 х 8,5) элементов в линейке ПЗС (см. рис. 1.24).

Число физических элементов в линейке определяет интервал дискретизации направления X, а количество остановок на дюйм задает дискретизацию направления Y. Хотя они обычно упоминаются как «разрешающая способность» сканера, термин не вполне точен. Разрешающая способность (возможность сканера выявить все подробности изображения) определяется качеством электроники, оптики, фильтров и моторного привода, а также частотой дискретизации (оцифровки).

К концу 1998 г. максимальная плотность элементов ПЗС в линейке составляла 600 на 1 дюйм. Однако видимая разрешающая способность может быть увеличена, используя методику, известную как интерполяция, которая заключается в программном или аппаратном вычислении промежуточных значений сигнала, после чего они вставляются между реальными данными.

Рассмотрим, как можно было бы оценить требования к разрешению сканеров, в зависимости от качества выходного изображения.

Цветная полиграфия. Здесь оборудование, воспроизводящее различные уровни цвета, использует метод, именуемый обработкой полутонов. Наборные устройства, используемые в офсетной печати - технологии печати глянцевых журналов - способны к выводу 133 строк/дюйм. Как показывает опыт, для получения качественной печати разрешение сканера должно быть в 1,5 раза выше, т. е. около 200 тнд.

Вывод на струйный принтер. При сканировании для последующего вывода на принтер разрешающая способность сканера должна соответствовать разрешающей способности вывода настолько близко, насколько возможно, принимая во внимание относительные размеры оригинала и выходного изображения. Если они одинаковы, никакой корректировки не требуется. Если, однако, выходное изображение должно быть напечатано в ином формате (большем или меньшем чем оригинал), разрешение сканера должно быть соответственно откорректировано.

Предположим, необходимо отсканированную почтовую марку размера 1 х 1,5" напечатать на струйном принтере, который имеет разрешение печати 600 тнд, причем изображение должно быть увеличено, и составить в размере 2 х 3". Если бы марка сканировалась при разрешении 600 тнд, отсканированное изображение имело бы 600 пикселей по вертикали (1" умножить на 600) и 900 пикселей по горизонтали (1,5" умножить на 600). Увеличение изображения до размера, предназначенного для печати (2 х 3"), уменьшает фактическую разрешающую способность до 300 тнд (900/3 = 300, поскольку 900 горизонтальных пикселей будут расположены в 3"), и так же в вертикальном измерении. Это только половина разрешающей способности принтера, и качество вывода будет ниже оптимального. Для лучшего качества напечатанного изображения, которое фактически использует 600 тнд, сканирование следует проводить при 1200 тнд.

Вывод на монитор. Сходные расчеты можно сделать также, если размер выводимого образа меньше, чем оригинал. Предположим, необходимо отсканировать фотографию размером 4 х 5", которая будет отображена на Web-странице в половинном размере - 2 х 2,5". Компьютерные мониторы обычно имеют разрешающую способность 72 или 90 тнд. Сканирование фотографии при 72 тнд дает изображение размером в 288 х 360 пикселей. Сокращение этого размера в 2 раза давало бы изображение с вертикальной разрешающей способностью 144 тнд, что вдвое больше необходимой. В этом примере оригинальное изображение могло быть отсканировано при 36 тнд без потери качества результирующего изображения.

Соотношения, используемые в этих примерах, описываются следующей формулой:

где SR - идеальное разрешение сканера, тнд;

DR - разрешение устройства вывода, тнд;

DW - ширина, с которой изображение будет напечатано или отображено, дюймы;

OW - ширина сканируемого оригинала, дюймы.

Цветовые сканеры

Головки некоторых цветовых сканеров содержат единственную флюоресцентную трубку с тремя ПЗС, которые снабжены цветными фильтрами, в то время как другие имеют три цветных трубки и единственный блок ПЗС. Первые производят полное цветовое изображение за единственный проход, в то время как вторые - за три прохода. С конца 1990-х гг. однопроходные устройства составляют большинство цветовых сканеров.

Эти сканеры используют один из двух методов - либо расщепление луча, либо ПЗС с цветовыми фильтрами. В первой конструкции свет, проходящий через призму, разделяется на три первичных цвета, каждый из которых считывается соответствующими ПЗС. Этот метод считается наилучшим для обработки отраженного света, но для снижения затрат многие изготовители используют три массива ПЗС, каждый из которых покрыт фильтрующей пленкой так, чтобы он воспринимал только один из первичных цветов. Будучи технически менее точным, этот метод обычно производит результаты, которые трудно отличить от таковых для сканера с расщеплением луча.

Разрядная глубина. Разрядная (битовая, цветовая) глубина сканера характеризует количество информации, содержащейся в одном пикселе выходного образа. Самый простой сканер (черно-белый сканер на 1 бит) использует для представления каждого пикселя «1» или «0». Чтобы воспроизвести полутона между черным и белым, сканер должен иметь хотя бы 4 бита (для 16 = 2 4 полутонов) или 8 бит (для 256 = 2 8 полутонов) на каждый пиксель.

Самые современные цветовые сканеры поддерживают не менее 24 бита, что означает фиксацию 8 бит информации по каждому из первичных цветов (красный, синий, зеленый). Устройство на 24 бита может теоретически фиксировать более чем 16 млн различных цветов, хотя практически это число намного меньше. Это почти фотографическое качество и упоминается поэтому обычно как «полноцветное» сканирование (true colour scanning).

В последнее время все более увеличивающийся список изготовителей предлагает сканеры с разрядной глубиной на 36 или 30 битов. Хотя пока немногие прикладные программы машинной графики способны к обработке изображений с глубиной более чем 24 бита, этот избыток разрешения позволяет осуществлять полезные операции по редактированию графики как в драйверах, так и в приложениях.

Динамический диапазон. Динамический диапазон по своей сути подобен разрядной глубине, которая описывает цветовой диапазон сканера, и определяется как функционированием АЦП сканера, так и чистотой света, качеством цветных фильтров и уровнем любых помех в системе.

Динамический диапазон измеряется в шкале от 0,0 (абсолютно белый) до 4,0 (абсолютно черный), и единственное число, данное для конкретного сканера, говорит, сколько оттенков модуль может различить. Большинство цветных планшетных сканеров с трудом воспринимает тонкие различия между темными и светлыми цветами на обоих концах диапазона и имеет динамический диапазон около 2,4. Это конечно, немного, но обычно достаточно для проектов, где идеальный цвет не самоцель. Для получения большего динамического диапазона следует использовать цветовой планшетный сканер высшего качества с увеличенной разрядной глубиной и улучшенной оптикой. Эти высокопроизводительные модули обычно обеспечивают динамический диапазон между 2,8 и 3,2 и хорошо подходят для большинства приложений, требующих высококачественный цвет (например, офсетная печать). Наиболее близко к пределу динамического диапазона позволяют подойти барабанные сканеры, часто обеспечивающие значения от 3,0 до 3,8.

Теоретически сканер на 24 бита предлагает диапазон 8 бит (256 уровней) для каждого первичного цвета, и различие между двумя из 256 уровней обычно не воспринимается человеческим глазом. К сожалению, наименьшие из значащих битов теряются в шуме, в то время как любые тональные исправления после сканирования еще более сужают диапазон. Именно поэтому лучше всего предварительно устанавливать любые исправления яркости и цвета на уровне драйвера сканера перед заключительным сканированием. Более дорогие сканеры с глубиной в 30 или

36 битов имеют намного более широкий диапазон, предлагая более детализированные оттенки, и разрешают пользователю делать тональные исправления, заканчивающиеся приличным 24-битовым изображением. Сканер на 30 битов принимает 10 битов данных на каждый цвет, в то время как сканеры на 36 битов - по 12 битов. Драйвер сканера позволяет пользователю выбрать, какие именно 24 бита из исходных 30 или 36 битов сохранить, а какие - нет. Эта настройка делается путем изменения «кривой цветовой гаммы» (Gamma Curve) и доступна при обращении К Настройке тонов (Tonal Adjustment control)драйвера TWAIN (см. рис. 1.28).

Режимы сканирования. Среди общего разнообразия методов представления изображения в ЭВМ наиболее распространенными являются:

Шт р их о в а я графика - наиболее простой формат. Так как сохраняется только черно-белая информация (в компьютере представлен черный цвет как «1» и белый как «0»), требуется только 1 бит данных, чтобы сохранить каждую точку просмотренного изображения. Штриховая графика наиболее подходит при сканировании чертежей или текста.

Полутоновое изображение. В то время как компьютеры могут сохранять и выдавать изображения в полутонах большинство принтеров не способно печатать различные оттенки серых цветов. Они применяют метод, названный обработкой полутонов , используя точечный растр, имитирующий полутоновую информацию.

Изображения в оттенках серого - наиболее простой метод сохранения графики в компьютере. Человек может различить не более 255 различных оттенков серого, что требует единственного байта данных со значением от 0 до 255. Данный тип изображения составляет эквивалент черно-белой фотографии.

Полноцветные изображения - наиболее объемные и самые сложные, сохраняемые и обрабатываемые в ПК, используют 24 бита (по 8 на каждый из основных цветов), чтобы представить полный цветовой спектр.

В табл. 4.1 даются характеристики ряда сканеров.

Таблица 4.1. Характеристики некоторых моделей сканеров

Наименование

Некоторые особенности конструкции

Скорость сканирования (стр./мин, формата А4, 200 тнд)

Оптическое

разрешение,

документа

Интерфейс

ScanPartner Е.О.

Лоток автоподачи на 30 листов

ScanPartner 10с

Планшетный с автоподачей 50 листов, цветной (трехпроходный)

  • 3093GX,
  • 3093ЕХ

Планшетный с автоподачей 50 листов

SCSI (GX), видео (EX)

  • 3093DG,
  • 3093DE

SCSI (DG), видео(DE)

  • 3096GX,
  • 3096ЕХ

SCSI (GX), видео (EX)

  • 3097G,
  • 3097Е

Планшетный с автоподачей 100 листов

SCSI (G), видео (E)

  • 3099GH+,
  • 3099ЕН+

Ротационный, автоподача 1000 листов

SCSI (GH+), видео (EH+)

Планшетный с автоподачей 50 листов, цветной (однопроходный)

Планшетные с автоподачей 100 листов

36 (5000F), 54 (6000F)

(возможен

Copiscan 2137А, 2138А

Ротационные с автоподачей 100/500 листов, автоматическое усиление контра- стности (АСЕ)

48 (2137А), 72 (2138А)

(возможен

Ротационный с автоподачей 100 листов, АСЕ

Видео и SCSI

Окончание табл. 4.1

Цифровое фото: представление и обработка

Фотографическое изображение в цифровой форме может быть получено с помощью сканера и в последующем обработано с помощью редактора изображений наподобие Photoshop. Остановимся на цифровых фотокамерах.

Беспленочные (цифровые) камеры внешне очень похожи на традиционные фотокамеры - в камерах обоих типов имеется объектив, затвор и диафрагма. Фактически в некоторых профессиональных беспленочных камерах используются готовые корпуса от 35-мм аппаратов Nikon, Minolta или Canon (рис. 4.9, а). Различие же состоит во внутреннем устройстве или в способе сохранения изображения.

В традиционных фотокамерах изображение фокусируется на пленке, покрытой светочувствительным слоем кристаллов галоидного серебра. В цифровых - изображение обычно фокусируется на фоточувствительном кристалле полупроводника, называемом прибором с зарядовой связью (ПЗС, рис. 1.24). ПЗС применяются также в сканерах, факсимильных аппаратах и видеокамерах.

КМОП (CMOS). В 1998 г. появились датчики CMOS (complementary metal-oxide semiconductor) как альтернативная к приборам с зарядовой связью технология снятия изображения. Производственные процессы CMOS те же, что и в производстве


Рис. 4.9. Общий вид цифровой камеры (а); функционирование цветовых пикселей в обычных матрицах ПЗС (б); технология ХЗ (в); пиксели переменного размера (г)

миллионов процессоров и чипов памяти во всем мире. Поскольку уже существовала высокопродуктивная индустрия с существующей инфраструктурой, чипы CMOS оказались значительно дешевле в изготовлении, чем ПЗС. Другое преимущество состоит в том, что они имеют значительно более низкие требования к мощности, чем ПЗС. Если последние имеют только одну функцию - регистрации, то КМОП может быть загружен рядом других задач - аналого-цифровое преобразование, обработка сигналов, баланс белого цвета, управление камерой и пр.

ХЗ. Весьма перспективным является расширение CMOS - технология ХЗ, предложенная в 2002 г. Foveon Corporation. В обычных цифровых системах фильтры цвета применены к единственному слою фотодатчиков, расположенных в мозаичном порядке. Фильтры позволяют только одной длине волны света - красный, зеленый или синий - проходить к любому данному пикселю, позволяя записать только один цвет. В результате, типичные мозаичные датчики улавливают только 50 % зеленых и 25 % синих или красных падающих лучей. Подход имеет неустранимые недостатки, независимо от того, сколько пикселей мог бы содержать датчик изображения. Так как они фиксируют только часть светового потока, приходится осуществлять дополнительную обработку, чтобы интерполировать две трети, которые они теряют. Это замедляет скорость получения изображения, а интерполяция ведет к цветовым артефактам и потере четкости изображения. Некоторые камеры даже преднамеренно размывают изображения, чтобы уменьшить цветовые артефакты.

Датчик изображения CMOS Foveon Corporation использует технологию ХЗ и позволяет фиксировать информацию в 3 раза быстрее, чем обычные цифровые камеры при сохранении разрешающих способностей. Это достигается использованием трех слоев фотодатчиков, внедренных в кремний. Уровни расположены так, чтобы использовать тот факт, что кремний поглощает лучи света различной длины волны на различных глубинах, так что один слой регистрирует красные, другой зеленые и оставшийся - синие лучи. Это означает, что для каждого пикселя на датчике изображения Foveon ХЗ, фактически имеется стек трех фотодатчиков (рис. 4.9, в).

Технология ХЗ не только ведет к лучшим изображениям, но также и лучшим камерам. Фактически, это открывает возможность построения нового поколения устройств, стирающих существующую грань между фотографией и цифровым видео, не жертвуя качеством. Поскольку датчики ХЗ фиксируют полный цвет в каждом местоположении пикселя, эти пиксели могут группироваться, чтобы создать большие, полноцветовые суперпиксели. Эта возможность, названная «пиксели переменных размеров» (Variable Pixel Sizing - VPS). В этом случае сигналы от группы пикселей могут быть объединены так, что камера будет рассматривать ее как один пиксель (рис. 4.9, г). Например, датчик изображения 2300 х 1500 содержит более 3,4 млн пикселей, но при использовании VPS, чтобы сгруппировать их в блоки 4x4, датчик изображения приобретает размерность 575 х 375 пикселей, каждый из которых в 16 раз больше, чем исходный. Размеры группы пикселей являются переменными - 2x2, 4x4, 3x5, и т. д., и управляются электронной схемой, интегрированной в датчики изображения Foveon ХЗ.

Группировка пикселей увеличивает отношение «сигнал-шум», что позволяет делать полноцветные снимки при низком освещении с уменьшенным шумом. Использование VPS для уменьшения разрешающей способности также позволяет датчику работать при высоких скоростях передачи кадров. Технология VPS позволяет создавать комбинированные устройства, совмещающие цифровое фото (высокая разрешающая способность, относительно медленная обработка информации) и цифровое видео (высокая скорость при более низком разрешении); по оценкам, изменение параметров может достигать 50 раз.

В то время как обычные датчики изображения CMOS изготовлялись, используя 0,35- или 0,50-мкм технологии, и считалось, что следующий шаг - 0,25-мкм, датчик CMOS Foveon Corporation ХЗ содержит 16,8 млн пикселей (4096 х 4096), имеет размер 22 х 22 мм и выполняется по 0,18-мкм технологии.

Качество изображения. Качество цифровой камеры зависит от многих факторов, включая оптическое качество линзы, матрицы съемки изображения, алгоритмов сжатия и других компонентов. Однако, самый важный детерминант качества изображения - разрешающая способность матрицы ПЗС - чем больше элементов, тем выше разрешающая способность, и таким образом может быть зафиксировано больше подробностей изображения.

В 1997 г. типичная разрешающая способность цифровых камер была 640 х 480 = 307 тыс. пикселей, год спустя появились «камеры мегапикселя», что подразумевало, что за те же деньги можно было приобрести модель на 1024 х 768 или даже 1280 х 960= 1,22 млн. К началу 1999 г. разрешающие способности дошли до 1536 х 1024 и в середине этого же года был преодолен барьер 2 мегапикселей с появлением разрешающей способности 1800 х 1200 = 2,16 млн. Год спустя - барьер 3 мегапикселей (2048 x 1536 = 3,15 млн пикселей). Первая камера с 4 мегапикселями появилась в середине 2001 г., обеспечивая 2240 х 1860 = 4,16 млн пикселей.

Однако даже датчик Foveon ХЗ (4096 х 4096 = 16,8 млн пикселей) все же не перекрывает возможностей обычной фотопленки. Поскольку высококачественные линзы объективов обеспечивают разрешение по крайней мере 200 точек на 1 мм, негативная пленка стандарта 100ASA шириной 35 мм и размером кадра 24 х 36 мм обеспечит разрешение 24 х 200 х 36 х 200 = 34,56 млн пикселей, что все еще недостижимо для цифровых камер.

Тем не менее основное преимущество цифровых фотокамер по сравнению с обычными состоит в том, что они позволяют немедленно воспроизвести изображение на телевизионном приемнике или мониторе компьютера, распечатать его на цветном принтере, записать на видеомагнитофон или передать в телевизионную сеть.

Цифровые камеры - автоматические устройства, не требующие ручной настройки. Загрузка изображений в ПК не вызывает затруднений и требует только подключения соединительного кабеля к камере и порту компьютера, открытия файлов поставляемого с фотокамерой программного обеспечения и выбора изображений, которые будут автоматически переданы и запомнены на жестком диске. Кроме того, запись изображений может осуществляться на флэш-память (карты CompactFlash или SmartMedia).

Существенное различие между беспленочными и обычными камерами состоит в задержке длительностью несколько секунд, которая требуется камере для фиксации изображения, его преобразования, сжатия и сохранения в цифровом виде.

В отличие от пленочных, каждая из цифровых камер позволяет стереть последний отснятый кадр. Чтобы не занимать память каким-либо неудачным снимком, можно удалять несколько кадров вразбивку. Во всех камерах предусмотрен также механизм защиты, предохраняющий от случайного стирания отснятых кадров, хранящихся в памяти камеры. Еще одна важная особенность заключается в программном обеспечении, поставляемом вместе с камерой. Во многих случаях в состав ПО входят небольшие прикладные программы, позволяющие кадрировать, поворачивать и корректировать изображения без необходимости импортировать их в более сложные программы редактирования (например, Adobe Photoshop). При наличии у камеры средств цифрового входа и видеовыхода можно загрузить деловую презентацию в ее память и затем воспроизвести ее на телевизионном приемнике.



Похожие публикации