Телевизоры. Приставки. Проекторы и аксессуары. Технологии. Цифровое ТВ

Особенность природы вирусов. Природа и происхождение вирусов. Vii вечно живые

Уже давно ведется спор о том, что такое вирусы - живое или неживое. Действительно, вирусы очень просто устроены, не имеют клеточной организации, могут кристаллизоваться. Еще Д.И.Ивановский обнаружил в клетках листьев табака, пораженных мозаичной болезнью, кристаллоподобные образования. Их называют “кристаллами Ивановского”. Кристаллизуемость не укладывается в наши представления о живом. Вирусы не имеют самостоятельного обмена веществ, на этапе синтеза компонентов вириона он существует в “разобранном” виде, его отдельные компоненты являются молекулами нуклеиновой кислоты и белка Вирусы могут проявлять свои инфекционные свойства даже если существуют только в виде одной молекулы нуклеиновой кислоты - инфекциозность нуклеиновой кислоты вируса. Все это говорит о вирусах как о неживых агентах.

Однако, с другой стороны, вирусы обладают способностью сохранять свою индивидуальность, обособленность от внешней среды, обеспечивают, хотя и своеобразно, воспроизводство своего генотипа и фенотипа. Для вирусов характерны явления наследственности и изменчивости, они эволюционируют по законам, общим для всего живого. Это подтверждает живую природу вирусов.

По-видимому, решение вопроса о природе вирусов имеет больше общетеоретическое, чем практическое значение и связано с проблемой определения живого. С открытием вирусов расширились и углубились наши представления о сущности жизни.

Но мы, медики, к этому вопросу должны подойти с прагматических позиций. Вирусы являются возбудителями вирусных инфекционных болезней. А инфекционный процесс в отличие от интоксикации - это процесс взаимодействия двух живых существ. Вирусные заболевания возникают и распространяются по законам инфектологии, они требуют применения тех же методов профилактики и лечения, что и инфекции, вызванные другими микроорганизмами. Поэтому с точки зрения практической медицины будем рассматривать вирусы как живых возбудителей инфекционных вирусных заболеваний, требующих применения лечебно-профилактических и противоэпидемических мероприятий.

Вопрос о происхождении вирусов, как можно понять, не имеет в настоящее время обоснованного решения. Он тесно связан с решением проблемы происхождения жизни на Земле. Но следует рассмотреть основные гипотезы о происхождении вирусов.

Вторую гипотезу можно обозначить как гипотезу “протобионта”. Она предполагает, что вирусы являются потомками простейших живых существ, которые были родоначальиками всего живого и сформировались из неживого органического материала. В дальнейшем шла эволюция этих образований в сторону образования клеточных организмов, а вирусы являются реликтовыми потомками таких протобионтов. Эта гипотеза интенсивно развивалась и советскими вирусологами. Однако очень трудно объяснить, каким же образом могли существовать и репродуцироваться такие первичные вирусы в отсутствие клеток. Ведь вирусы не способны размножаться без использования органелл и ферментных систем клеток. Поэтому в настоящее время гипотеза о происхождении вирусов от первичных доклеточных форм жизни большинством вирусологов не разделяется.

Третья гипотеза может быть определена как гипотеза “взбесившихся генов”. Она предполагает, что вирусы являются генетическими элементами клеток, обособившимися и приобретшими способность к автономному существованию. Гипотеза хорошо объясняет и многообразие генетического материала вирусов, и возможность их существования и эволюции.

Необходимо напомнить, что у бактерий имеются аналогичные генетические структуры, которые могут передаваться от одних бактериальных клеток к другим и воспроизводится в них. Это - плазмиды. Плазмиды представляют собой небольшие кольцевые молекулы ДНК, обладающие определенной автономностью. Они могут воспроизводиться в бактериальных клетках либо интегировать в бактериальную хромосому. Эти свойства плазмид аналогичны свойствам вирусов. Кстати, фаг, вирус бактерий, в форме профага мы относим к плазмидам.

Можно представить, что и вирусы являются участками нуклеиновых кислот, окруженными белковыми оболочками. Оболочки вируса обеспечивают ему возможность сохраняться во внеклеточном состоянии и проникать в клетку. Именно эта гипотеза и разделяется многими вирусологами в настоящее время. Можно высказать надежду, что с развитием наших знаний о живом мы решим и проблему происхождения вирусов.

1. Пятк³н К. Д., Кривоше¿н Ю.С. М³кроб³олог³я. - К: Высшая школа, 1992. - 432 с.

Тимаков В.Д., Левашев В.С., Борисов Л.Б. Микробиология. - М: Медицина, 1983. - 312 с.

2. Борисов Л.Б., Козьмин-Соколов Б.Н., Фрейдлин И.С. Руководство к лабораторным занятиям по медицинской микробиологии, вирусологии и иммунологии / под ред. Борисова Л.Б. – Г. : Медицина, 1993. – 232 с.

3. Медицинская микробиология, вирусология и иммунология: Учебник под ред. А.А.Воробьева. – М.: Медицинское информационное агентство, 2004. - 691 с.

4. Медицинская микробиология, вирусология, иммунология /ред. Л.Б.Борисов, А.М.Смирнова. - М: Медицина, 1994. - 528 c.

5. Букринская А.Г. Вирусология. – М.:Медицина, 1986. – 336 с.

Лекция 22. ОСОБЕННОСТИ ИНФЕКЦИИ И ИММУНИТЕТА ПРИ ВИРУСНЫХ ЗАБОЛЕВАНИЯХ

Диагноз «рак» часто звучит как приговор. Миллионы людей ежегодно умирают от этой страшной болезни. В Соединенных Штатах рак является убийцей номер два, уступая лишь сердечно-сосудистым заболеваниям. Каждый год его жертвами становятся около полумиллиона американцев. Однако рак все же можно предупредить. Профилактика — вот ключ к решению этой проблемы. Добавьте сюда раннюю диагностику и лечение — и вы получите формулу спасения миллионов людей от преждевременной смерти.
Профилактическая медицина родилась тысячи лет назад еще при Моисее. В Библии говорится, что именно Моисей, вдохновленный Богом, создал первый в истории кодекс здоровья. Моисей не только ввел карантин при инфекционных заболеваниях, он разработал целый комплекс особых санитарно-эпидемиологических мер, включая удаление нечистот. Моисей на века опередил свое время в понимании и лечении болезней.

XVI век — век научного прогресса и просвещения. Именно тогда Пастер выявил, что многие инфекционные заболевания вызываются микроорганизмами. Наконец, в начале нашего века были открыты специальные химические вещества и антибиотики, позволяющие лечить и предупреждать инфекции. Но самым знаменательным событием в области здравоохранения явилось развитие профилактической медицины.

В 1798 году английский врач Эдвард Дженнер обнаружил, что доярки часто заболевают коровьей оспой (легкой формой натуральной оспы). Он заметил также, что перенесшие это заболевание не были подвержены натуральной оспе, страшному инфекционному заболеванию, эпидемии которого периодически проносились по Европе, ежегодно унося тысячи жизней. Доктор Дженнер взял содержимое пустул (гнойничков) заболевшего коровьей оспой скота и внес небольшое количество его в царапину на коже своего шестимесячного сына. Это привело к разработке вакцины натуральной оспы и рождению новой науки — иммунологии. Когда вакцина была усовершенствована и ее применение расширилось, число случаев заболевания оспой заметно сократилось. Благодаря программе массовой иммунизации, осуществленной Всемирной организацией здравоохранения в 70-х годах нашего столетия, оспа была побеждена. В 1977 году в Сомали, Африка, был зарегистрирован последний случай заражения этой болезнью на планете Земля.

Лишь 125 лет назад серьезно заговорили о профилактике заболеваний, а не только об их лечении. В то время внимание медиков было в основном направлено на инфекционные заболевания, которые уносили наибольшее число жизней. Затем произошла революция в санитарии. Согласованные усилия ученых-медиков были направлены на окружающую среду, главным образом, на обеспечение населения экологически чистой питьевой водой, удаление сточных вод, бытовых отходов и других нечистот. Стал осуществляться контроль за пищевыми источниками заражения, включающий в себя проверку мяса и пастеризацию молока. Эти усилия общественного здравоохранения позволили заметно снизить заболеваемость.

Около 30 лет назад на профилактику заболеваний стали смотреть как бы по-новому. Но теперь речь шла уже не об инфекционных, а о таких соматических заболеваниях, как атеросклероз сосудов сердца, инсульт, гипертония, диабет, артрит и рак. Оказалось, что их можно предотвратить путем улучшения «личной экологии». Эти так называемые «болезни образа жизни» можно предупредить, прежде всего, с помощью индивидуальных, личных усилий. При этом деятельность органов общественного здравоохранения — как частных, так и государственных — переместилась в область распространения информации по вопросам охраны здоровья.

Однако прежде чем говорить о профилактике рака, следует сказать о самом заболевании. Рак — это не единичная болезнь, а скорее группа заболеваний, вызываемых различными причинами, что обусловливает и соответствующий подход к их лечению. Рак матки, например, может возникнуть как в области шейки, так и в теле матки. Возникновение, симптомы, лечение и прогноз двух этих типов рака матки различны. Онкологи различают более ста форм рака у людей.

Многое удалось узнать об этиологии (раздел медицины, изучающий причины и условия возникновения болезней) и лечении этой группы сложных заболеваний, называемых раком, однако значительная часть вопросов остается без ответа до сих пор. К счастью, для того чтобы изменить образ жизни, повышающий риск заболеваемости раком, не обязательно знать ответы на все вопросы. Следуя советам, данным в этой главе, можно предотвратить рак на 70—90%, а может быть, и больше.

Каковы причины рака

Было бы замечательно, если бы на этот простой вопрос имелся такой же простой ответ. К сожалению, ответ непрост. Рак — это проблема огромной сложности. Этиология рака связана со многими факторами — возрастом, расой, культурой, образом жизни, внешней и внутренней средой, генетической предрасположенностью. Хотя вообще рак считается болезнью пожилых людей (половина всех случаев приходится на возраст после 65 лет), тем не менее в Соединенных Штатах ежегодно умирает от рака более 1500 детей в возрасте от 3 до 14 лет. Каждый год от рака умирает детей больше, чем от инфекционных заболеваний. К счастью, с 1950 года смертность детей от рака снизилась вдвое. Иммунитета против рака не имеет никто. В Африке чернокожие редко болеют раком прямой кишки или кожи, у американских же негров рак прямой кишки встречается чаще, чем у белых американцев. Фактически в Соединенных Штатах чернокожие заболевают раком чаще, чем белые. За последние 30 лет заболеваемость раком среди чернокожих увеличилась на 27%, тогда как у белых — только на 12%. Исключением из этой закономерности является рак тела матки. В 1985 году у белых женщин он встречался вдвое чаще, чем у черных.

Отмечается прямая зависимость между культурой и образом жизни человека и заболеваемостью раком. Неправильное питание, наркотики, алкоголь, табак и стрессы являются очень важными факторами, обусловливающими возникновение рака. В странах третьего мира это заболевание встречается гораздо реже, чем в так называемом западном мире. Среди адвентистов седьмого дня, проживающих в Калифорнии, заболеваемость раком заметно ниже, чем в целом по штату.

Рак начинается с перерождения одной-единственной клетки. Об этом речь пойдет дальше. То, что вызывает первое изменение в данном процессе перерождения, называется инициатором. Однако, прежде чем клетка станет раковой, в ней происходит целый ряд изменений. Эти вторичные изменения происходят под действием факторов, называемых промоторами. Рак не развивается при отсутствии одного из этих факторов — инициирующего и способствующего. Процессы, предшествующие возникновению рака, происходят в ядре клетки, а конкретнее — в генах, этом «главном участке управления» деятельностью клетки. Существует много разновидностей генов, и каждая из них выполняет свою функцию. Гены не только передают наследственные признаки от поколения к поколению, они отвечают также за управление деятельностью внутри клетки и за выработку многочисленных ферментов, гормонов и других химических веществ, необходимых для нормального протекания физиологических процессов. Гены также контролируют и направляют рост клеток, их воспроизводство. Гены выстроены в определенной последовательности в ДНК хромосом. Нарушение этой последовательности (транслокация) и может послужить толчком к возникновению рака. Протоонкогены — это гены, которые выполняют в клетке контрольные функции, но именно они являются мишенью для инициаторов рака. Некоторые из протоонкогенов, связываясь с инициатором или транслируясь, превращаются в онкогены, которые при дальнейшем контакте с инициаторами или промоторами производят жизнеспособные раковые клетки, образующие опухоли.

К факторам окружающей среды, которые могут служить инициаторами или промоторами рака, относятся радиационные агенты (ультрафиолетовые лучи, тепловая и рентгеновская радиация), химические канцерогены (табачный дым, алкогольные напитки, промышленные химические вещества) и стресс. Изменения генов, вызванные инициаторами, обычно необратимы и скоротечны. Те же самые агенты, которые действуют как инициаторы, могут служить и промоторами. Промоторы действуют в течение длительного периода времени (иногда годы). Их действие можно предотвратить. Примерами промоторов являются пищевой жир, фенобарбитал, гормоны, афлатоксины, сахарин, асбест, углеводороды, синтетические эстрогенные средства. Доказано, что стресс является одним из важных факторов, вызывающих рак. Любое раздражение — эмоциональное или физическое — оказывает влияние на внутреннюю среду организма. Происходит угнетение иммунной системы. Добавьте к этому усиленное выделение гормонов, соляной кислоты, веществ типа адреналина — и вы получите благоприятную среду для неконтролируемого воспроизводства клеток.

Доказана также роль вирусов в заболевании раком. Более 20 лет назад на конференции хирургов я слышал заявление Нобелевского лауреата Уэнделла Стэнли. По его мнению, все виды рака определенным образом связаны с вирусами. Стэнли первому удалось выделить такой вирус (1935 г.). Он был коллегой Франциска Дюран-Рейнальса из Йельского университета, который одним из первых выдвинул теорию вирусной природы раковых опухолей. Цепь доказательств, связывающих возникновение рака с вирусами, берет свое начало еще в конце прошлого века. В 1892 году русский микробиолог Д. И. Ивановский первым обнаружил вирус мозаичной болезни листьев табака. В 1911 году П. Раус открыл вирус, вызывающий саркому у кур и передающийся другим птицам. В 1936 году Биттнер обнаружил вирус, который вызывает опухоль молочной железы у мышей, и доказал, что он передается с молоком мыши. Позже ученый установил связь вирусного агента с генетическими изменениями, которые ведут к развитию рака. Исследователь Дубелько первым вырастил культуру раковых клеток, в частности, культуру вируса полиомы мышей. Сара Стюарт в 1957 году открыла новый вирус рака и вырастила его культуру, которая вызывала рак, когда ее вводили здоровым животным.

В 50-х годах Л. Гросс сделал необычное наблюдение. У мышей в возрасте до 16 дней, которым он вводил вирус рака, развивалась лейкемия. У мышей той же породы в более старшем возрасте, которым вводился этот же вирус, развивался рак слюнных желез.
В настоящее время известно более 50 вирусов (разновидности как РНК, так и ДНК), которые вызывают рак у животных.

Степень распространения вирусных инфекций в животном мире поражает воображение. Было обнаружено, что более 40% коров в молочном хозяйстве имеют вирус бычьей димфомы (по результатам проверки в отдельных стадах). Определенные вирусы вызывают рак у рыб. Несколько лет назад одно западное государство вынуждено было закрыть свои рыбные питомники из-за вспышки рака в инкубационных баках. Я вегетарианец и убежден, что животные продукты, включая яйца, молоко, птицу, рыбу и мясо, — это фактор риска, хотя в настоящее время еще не доказано, что любой вирус рака может передаваться от животного человеку. Однако эти доказательства, возможно, скоро появятся. Некоторые исследователи сообщали об обнаружении в крови больного, страдающего раком, антител к определенным ретровирусам, вызывающим рак у животных. В 1970 году было обнаружено, что некоторые вирусы выделяют необычные ферменты, способные превращать РНК в ДНК. Этот фермент получил название обратной транскриптазы. Вирусы, которые выделяют подобный фермент, были сгруппированы в семейство, получившее название ретровирусов. Ретровирусы вызывают многие болезни у животных, в том числе и рак. Считается, что они вызывают некоторые заболевания и у людей, но пока остается недоказанным, что содержащие РНК вирусы рака могут внедряться в клетки человеческого организма, приводя к возникновению заболевания.

Генетические изменения, вызываемые инициатором, могут привести к мутации. Некоторые мутированные гены становятся онкогенами. К счастью, требуется мутация двух или более клеток, прежде чем развивается рак. С единичной мутацией организм обычно справляется с помощью защитных сил, и воспроизводство аномальных клеток прекращается. Благоприятным фактором является и то, что мутации, по большей части, вызывают смерть клетки, а не перерождение ее в раковую клетку.

Давайте рассмотрим лимфому Беркитта (африканскую лимфому) — рак, при котором инициатором может служить вирус Эпштейна-Барра (ЕВ), имеющий также отношение к носоглоточной карциноме и, возможно, к другим разновидностям рака у людей. Известно также, что вирус ЕВ вызывает инфекционный мононуклеоз. Вирус ЕВ может изменить ген роста в ядре клетки, не вызывая рака. Повторная встреча с этим вирусом или с каким-либо другим инициатором или промотором может вызвать вторую мутацию и возможную дислокацию в нормальном расположении генов. Теперь аномальная клетка предрасположена к тому, чтобы воспроизводить себя и образовывать опухоли, но этого все же не происходит без участия одного или более промоторов. Как указывалось, возможными промоторами рака являются пищевые токсины, малярия, наркотики и даже обычные гормоны.

Сходный механизм действует при некоторых разновидностях первичного рака печени. Здесь вирусы могут быть как инициаторами, так и промоторами. Токсины также могут являться инициаторами или промоторами. Недавно ученые обнаружили, что фенобарбитал, широко применяемое седативное средство, может стать промотором рака печени.

Кроме того, в развитии рака большую роль играет так называемая предрасположенность. Предрасположенность означает, что человек способен воспринять болезнь. Это во многом определяется его иммунной системой. Если у человека сильный иммунитет, то химические канцерогены, вирусы и даже умеренная радиация могут и не привести к раковым изменениям.

Общим для всех видов рака является патологическое и неконтролируемое воспроизводство клеток. Организм человека состоит приблизительно из 100 триллионов клеток, большая часть которых отвечает воспроизводством на раздражение или повреждение. Ежедневно умирают миллиарды клеток — их место должны занять новые. Давайте очень бегло рассмотрим строение клетки.

Микроскопические по своим размерам клетки насчитывают неограниченное разнообразие форм и видов. Каждая из них имеет оболочку, в которой заключено ее вещество. Оболочка состоит из двух слоев фосфолипидов. Фосфолипиды — это жиры и жировидные вещества (липиды), присоединенные к комплексной соли фосфорной кислоты. Для нормального функционирования каждая живая клетка должна находиться в состоянии постоянного движения, как амеба. Важное значение для этого движения имеет правильный состав фосфолипидов. Слишком большое количество холестерина, насыщенных или перенасыщенных жиров придает оболочке жесткость и мешает движению клетки. Так что количество и качество жиров в нашем рационе оказывает определенное влияние на активность клетки. Слишком большое количество холестерина, определенные виды жиров в рационе приводят к образованию неполноценных клеточных оболочек.

Внутри клетки находится протоплазма и ферменты, которые позволяют клетке выполнять ее специфические функции. Одни клетки нашего организма вырабатывают инсулин, другие — альбумин и глобулин, третьи вырабатывают антитела и иные средства химической защиты. Все клетки производят энергию. Им самим также требуется энергия. Контроль за всей этой деятельностью осуществляется из клеточного ядра.

    Страница 1 из 2

Вирусы открыты русским ботаником Д.И. Ивановским (1864 – 1920 гг.) в 1892 году при исследовании мозаичной болезни листьев табака. Термин «вирус» был впервые предложен в 1898 г. голландским ученым М. Бейеринком (1851 – 1931 гг.).

В настоящее время известно около 3000 различных видов вирусов.

Размеры вирусов колеблются от 15 до 350 нм (длина некоторых нитевидных достигает 3 000 нм; 1 нм = 1·10 –9 м), т.е. большинство из них не видны в световой микроскоп (субмикроскопические) и их изучение стало возможным только после изобрете­ния электронного микроскопа.

В отличие от всех остальных организмов вирусы не имеют клеточного строения!

Зрелая вирусная частица (т.е. внеклеточная, покоящаяся – вирион ) устроена очень просто: она состоит из одной или нескольких молекул нуклеиновых кислот, составляющих сердцевину вируса, и белковой оболочки (капсид) – это так называемые простые вирусы .

Сложные вирусы (например, гер­­песа или гриппа ) кроме, белков кап­сида и нуклеиновой кислоты содержат до­полнительную липо­проте­идную мем­бра­ну (оболочку, суперкапсид образуемый из плазматической мембраны клетки хозяина), раз­­­личные углеводы и фер­менты (рис.3.1).

Ферменты способствуют проникно­ве­нию вирусной НК в клетку и выходу обра­зо­вавшихся вирионов в среду (нейраминидаза миксовирусов, АТФ-аза и лизоцим некоторых фагов и др.), а также участвуют в процессах транскрипции и репликации вирусной НК (различные транскриптазы и репликазы ).

Белковая оболочка защищает нуклеиновую кислоту от различных физических и химических воздействий, а также препятствует проникновению к ней клеточных ферментов, предотвращая тем самым ее расщепление (защитная функция). Также, в составе капсида имеется рецептор, комплементарный рецептору заражаемой клетки – вирусы поражают строго определенный круг хозяев (определительная функция).

Вирионы многих вирусов растений и ряда фагов имеют спиральный капсид, в котором белковые субъединицы (капсомеры) уло­жены по спирали вокруг оси. Например, ВТМ (вирус табачной мозаики ) имеет форму палочек диаметром 15 – 17 нм и длиной до 300 нм (рис. 3.2.). Внутри его капсида имеется полый канал диаметром 4 нм. Гене­ти­ческим материалом ВТМ явл
яется одноцепочечная РНК, плотно уло­жен­ная в желобке спирального капсида. Длявирионов со спиральным капси­дом характерно высокое содержание белка (90 – 98%) по отношению к

Рис. 3.2. Строение вируса табачной мозаики.

нуклеиновой кислоте.

Капсиды вирионов многих вирусов (например, аденовирус , вирус герпеса , вирус желтой мозаики турнепса – ВЖМТ) имеют форму симметричного мно­гогранника, чаще всего икосаэдра (многогранник с 12 вершинами, 20 треугольными гранями и 30 ребрами). Такие капсиды называют изометрическими (рис. 3.3.). В таких вирионах содержание белка составляет около 50% по отношению к НК.

В вирусе присутствует всегда один тип нуклеиновой кислоты (либо ДНК, либо РНК), поэтому все вирусы делят на ДНК-содержащие и РНК-содержащие. Молекулы нуклеиновой кислоты в вирионе могут быть линейными (РНК, ДНК) или иметь форму кольца (ДНК). Причем эти нуклеиновые кислоты могут состоять из одной цепочки или из двух. Вирусная НК имеет от 3 до 200 генов.

Нуклеиновая кислота вируса совмещает в себе функции обеих кислот (ДНК и РНК) – это хранение и передача наследственной информации, а также управление синтезом белков.

В отличие от вирусов все клеточные организмы содержат оба типа нуклеиновых кислот.

Более сложное строение име­ют вирусы бактерий – бак­те­рио­фаги (рис. 3.4.). Они со­стоят из головки и хвоста (стер­жня и чех­ла, базальной плас­тинки и нитей отростка). Длин­ная молекула НК (РНК или ДНК) сложена в виде спирали внутри головки бактерио­фага (бел­ковой оболочки).

К вирусам относятся также и вироиды – ин­фек­ционные агенты, представляющие собой низко­мо­ле­ку­лярные (короткие) одноцепо­чечные кольцевые РНК, не ко­дирующие собственные белки (ли­шены кап­сида). Являются возбу­дителями ряда заболеваний.

К

ак уже было сказано выше, вне живой клеткивирусы раз­­мно­жаться не могут. Вирус по­падает в клетку, либо впрыскивая в нее свою нуклеиновую кислоту остав­ляя при этом белковую оболочку снаружи клетки (как это делают бактериофаги ), либо при фагоци­тозе (пиноцитозе) вместе с белковой оболочкой (вирусы жи­­вотных), либо через нарушен­ную клеточную оболочку (вирусы растений).

В

Рис. 3.4. Строение бактериофага.

Нити отростка

ирусы растений распространя­ются, как правило, с помощью насекомых и нематод (круглые черви). Сосущие насекомые (например, цикады) переносят вирусы вместе с соком, который они высасывают из клеток флоэмы или эпидермиса. Также вирусы могут передаваться потомству через семена и споры.

Ученые считают, что вирусы возникли около 3 млрд. лет назад из нуклеино­вых кислот организмов (прокариотов) в результате выделения из генома свободных фрагментов, которые приобрели способность синтезировать белковую обо­лочку и делится (удваиваться, реплицироваться) внутри клеток. Высказывается мнение, что новые типы вирусов и сейчас образуются из генома бактерий и эукариот (ядра, пластид, митохондрий).

В природе вирусы имеют большое значение, так как они распространены повсеместно и поражают все группы живых организмов, часто вызывая различные заболе­вания.

Известно более 1000 заболеваний растений , вызванных вирусами (РНК-со­дер­жащие). Наиболее распространены различные некрозы (участки мертвой ткани), мозаики (пятна, крапинки, полосы на органах растений), при которых повреждаются ткани паренхимы, уменьшается количество хлоропластов, разрушается флоэма и т.д.; наблюдается морщинистость или карликовость листьев. Вирусы вызывают задержку роста растений, что приводит к снижению урожаев.

ВЖМТ – вирус желтой мозаики турнепса , ВТМ – вирус табачной мозаики , ВККТ –вирус карликовой кустистости томатов.

Появление полосок на цветках некоторых сортов тюльпанов (пестрые) также обусловлено вирусом, а ведь цветоводы продают эти тюльпаны, выдавая их за особый сорт.

У животных вирусы (ДНК- и РНК-содержащие) вызывают такие заболевания, как: ящур (у крупного рогатого скота), бешенство (у собак, лисиц, волков), миксоматоз (у крыс), саркома, лейкоз и чума (у кур) и т.д. Очень часто за­ражаются этими болезнями и люди (при контактах с зараженными животными).

У человека вирусы вызывают такие заболевания, как: оспа (вирус натуральной оспы), свинка (парамиксовирус), грипп (миксовирус), респираторные заболевания (ОРЗ; риновирусы РНК-), инфекционный гепатит , полиомиелит (детский паралич; пикорнавирус), бешенство , герпес , СПИД (вирус иммунодефицита человека – ВИЧ).

Грипп – единственное инфекционное заболевание, которое проявляется в виде периодических глобальных эпидемий, опасных для жизни человека. Инфекционные свойства вируса гриппа (поражает слизистые оболочки дыхательных путей), как и других вирусов, зависят от специфических белков вирусной оболочки, которые постоянно изменяются в результате рекомбинаций или мутаций. Поэтому новые штаммы вируса гриппа вызывают новые эпидемии, так как у человека не выработался пока к ним иммунитет.

Так, зимой 1968/69 г. в США было зарегистрировано 50 млн. случаев гонконгского гриппа, при этом 70 000 человек погибло. Эпидемия 1918/19 г. охватила весь земной шар, проходила в виде трех волн и унесла 20 млн. человеческих жизней.

Вирусные заболевания с трудом поддаются лечению, поскольку вирусы не чувствительны к антибиотикам. К счастью, во многих случаях иммунная система ограничивает дальнейшее распространение инфекции.

Многочисленные вирусные заболевания человека и животных возможно предупредить путем иммунизации – проведения профилактических прививок, которые позволяют вырабатывать иммунитет против вирусов.

Человеком вирусы широко используются в микробиологических исследова­ниях (биотехнология, генная инженерия). Возможно использование вирусов для борьбы с вредителями сельскохозяйственных культур.

В США с хлопковой совкой эффективно борются с помощью вируса. Данный метод борь­бы практически безвреден – вирус, как правило, видоспецифичен (т.е. поражает только опреде­ленный вид организма).

Также установлено, что, например, вирус некротической мозаики риса подавляет рост ри­са. А вот другие растения, например, джут (источник грубых волокон для мешков и канатов), лучше растут, когда поражены этим вирусом, чем в здоровом состоянии. Этот феномен ученые пока объяснить не могут.

Бактериофаги поражают бактерии (проникают внутрь и активно их разрушают), в том числе и болезнетворные. Поэтому возможно их использование для предупреждения и лечения многих инфекционных заболеваний, для борьбы с болезнетворными бактериями: чумой, брюшным тифом, холе­рой и др.

Природа и происхождение вирусов

Антигенная изменчивость вируса гриппа и аспекты ее изучения.
Решение получения эффективных аттенуированных вариантов вируса грипп тормозится из-за уникальной пластичности и изменчивости его антигенных свойств. Почти ежегодные эпидемии гриппа через разные интервалы принимают глобальный характер. В последние годы инфектом, вызывающим пандемии, является вирус гриппа А. Анализ антигенных сдвигов внутри каждого из трех его типов показывают, что изменение антигенного состава штаммов вирусов типа АО к типу А происходило постепенно, а переход от типа А1 к А2 бал резким.
После того как в 1957 г было зафиксировано, что в природе появился новый серологический тип А2, он некоторое время казался стабильным, хотя небольшие изменения были. Но уже в 1964 г они стали значительными, а после эпидемии в Гонконге вирусы отличались на столько резко, что возникло предположение о возникновении нового антигенного типа А. В процессе эволюции вируса изменялись не только антигенные свойства поверхностных белков, но и другие признаки. У штамма вируса гриппа, выделенного во время эпидемии 1971-1972 г., в отличие от циркулировавших ранее штаммов значительно повысилась репродуцирующая и нейраминидазная активность, резко возросла термостабильность вирусов и появилась способность регулярно вызывать вирусемию у мышей (Закстельская и др., 1969; Соколов, Подчерняева, 1975).
Если раньше вирусы типа В отличались относительной стабильностью, то с 1967 г. наблюдается его непрерывное изменение (Seihachiro, Mitsuo, 1974). В апреле – мае 1974 г. были выделены новые штаммы вируса гриппа, из них В/Гонконг 15/72 рассматриваются как новый вариант, а другие – как промежуточные между старыми и новыми штаммами, что позволяет пересмотреть данные об антигенной стабильности вируса гриппа В и предположить появление нового серотипа.
Таким образом, вырисовывается картина значительных антигенных изменений внутри типов А и В. Это, естественно, привлекает пристальное внимание ученых, занимающихся проблемой гриппа. Поскольку даже наличие напряженного иммунитета населения не может стать причиной столь крупных антигенных изменений вируса гриппа, была выдвинута гипотеза о периодичности возникающих рекомбинаций между вирусами гриппа человека и животных, а также между вирусами человека и птиц. При разработке этой гипотезы выяснилось, что гриппом в естественных условиях болеют свиньи, лошади, индейки, цыплята, утки, крачки, и список этот продолжает пополняться. В сыворотке крови у них имеются антитела к вирусам гриппа человека. Это неудивительно, так как фрагментарность генома вируса гриппа обуславливается возможность не только внутривидовой, но межвидовой рекомбинации.
Препаративное разделение нейраминидазы и гемагглютинина открывает перспективы углубленного анализа взаимосвязи между отдельными признаками. Некоторые исследователи (Webster a. o., 1973; Горев и др., 1974) отмечают, что вирус - рекомбинант одновременно с гемагглютинином приобретает вирулентности. Имеется набор рекомбинантов, с заданными гемагглютинином и нейраминидазой.
В настоящее время многие вирусологические лаборатории мира изучают эпизоотии гриппа и анализируют антигенные связи с гриппом человека. Работы в этом направлении координируются и стимулируются ВОЗ. Сложность указанной проблемы диктует необходимость неоднозначного подхода к ее решению. Параллельные поиски других подходов к этому вопросу не следует рассматривать как альтернативные.
В 40-50 годах было экспериментально доказано возникновение антигенных вариантов при пассировании вируса в организме иммунизированных животных (Archetti, Horsfoll, 1960). Эти изменения были довольно стойкими, вирусы сохраняли свою новую антигенную специфичность в серийных пассажах in ovo и в отсутствии иммуносыворотки. Более того, длительные пассажи вируса гриппа через организмы неиммунезированных здоровых животных меняют его биологические свойства. Например, K. Paucker (1960) в процессе пассажей штамма PR8 длительно получал вирус, антигенно отличный от исходного и не похожий на другие типы вируса гриппа. Автор полагает, что между 103 и 107 пассажами образовался мутант, заменивший впоследствии исходный вирус. Аналогичные данные приводят K. Zgozelska и др. (1973).
Здесь мы видим проявление основного закона развития любой популяции, в том числе и вирусной, − генофонд популяции со временем меняется: с одной стороны, он обедняется в результате вымирания организмов, заключающих отдельные гены, а с другой − обогащается благодаря мутациям, дающим начало новым генам.
Работы S. Fazekas de Sent Groth, C. Hannoun (1973) по селекции спонтанных антигенных мутантов вируса гриппа А под "иммунопрессом" (т. е. в присутствии иммуносыворотки) позволили воспроизвести иерархический порядок вирусов внутри каждого типа. Причем во всех своих выводах он основывался на показателях перекрестной РЗГА. В опытах по отбору поздних мутантов, полученных с помощью антител, ему удалось воспроизвести естественный процесс селекции эпидемических штаммов. Он же предложил простую модель взаимодействия антитела с антигеном. Автор представил антигенную зону белковой оболочки вируса в виде небольшого числа аминокислотных белковых цепей, выступающих за поверхность вируса. Схематично это имеет вид вилки с зубьями разной длины и ширины, а соответствующие антитела представляют собой полости, комплиментарные по отношению к некоторым или ко всем зубьям. Таким образом, контакт антисыворотки с родственным антигеном приводит к элиминации гомологичных антигенов, и в популяции остаются антигены, имеющие некомплементарные участки, т. е. мутанты.
Эта схема представляет логическое развитие основных положений иммунологии, сложившихся в 40-х годах, о взаимодействии антигена и антитела и теории биосинтеза антител. Согласно этим работам, активная группа антител обладает конфигурацией, дополнительной к конфигурации детерминирующей группы антигена. Предполагалось, что эти группы относятся друг к другу как предмет к своему зеркальному отражению. K. Landsteiner (1946) были поставлены опыты с искусственным антигеном, полученным комплексированием молекул белка с различными низкомолекулярными соединениями, которые показали, что специфичность этого антигена может определяться лишь небольшой группой, присоединенной к белку. Антитела "не узнают" антиген, если он отличается только положением метильной группы в ароматическом ядре от того, которым было стимулировано образование этих антител, или пространственным положением гидроксила (Бойд 1969).
Таким образом, возвращаясь к вопросу антигенной изменчивости вируса, можно констатировать селекционную роль антител в этом процессе. Как возникают мутантные частицы в вирусной популяции – это один из вопросов, на который необходимо ответить для понимания эволюции вирусов гриппа.
Любая вирусная популяция содержит спонтанные мутанты, возникшие в результате действия внешних или внутренних факторов. В зависимости от приобретенных свойств мутант может иметь преимущество в размножении и преобладать в популяции. В некоторых случаях можно уловить тот фактор, который сыграл решающую роль в возникновении мутанта. Наибольший интерес для исследователей, занимающихся проблемой гриппа, представляет пандемия 1918 г., поскольку вирус ее был чрезвычайно патогенным для человека. Ретроспективный анализ этого вируса наводит некоторых исследователей на предположение, что пандемия была вызвана вирусом гриппа свиней, выделенным в 1930 г. так как штаммы имеют антигены, родственные антигенам вирусов свиней. Согласно другой точки зрения, повышение активности вируса вызвано появлением мутантных частиц под действием иприта, который применялся во время Первой Мировой войны, т. е. перед пандемической волной гриппа (Блашкович 1966). Действительно, иприт – чрезвычайно сильный биологически активный химический агент. Его мутагенная активность впервые была показана C. Auerbach и T. M. Robson (1946). Тогда же было выяснено, что иприт оказывает прямое мутагенное действие на хромосомы. Позднее было установлено, что иприт способен вызывать мутации у вирусов и бактерий. Следовательно, возможная его роль как мутагенного агента не исключена, если принять во внимание, что химические и физические факторы могут вызывать генетические изменения биологических объектов всех ступеней развития и вирусы, по-видимому, не составляют исключения.
К числу факторов, которые в естественных условиях могут являться мутагенами, относятся фармакологические препараты. Имеются работы, в которых анализируется связь тератогенной активности и химической структуры молекул лекарственных веществ; у микроорганизмов наблюдается аналогичное явление повсеместного возникновения лекарственно устойчивых мутантных форм. В разгар заболевания гриппом, когда происходит репродукция вируса в организме, больные принимают лекарства, представляющие собой синтетические химические соединения.
Известно, что противовирусные агенты достаточно эффективны только в том случае, если они способны избирательно подавлять синтез нуклеиновых кислот, т. е. соприкасаются непосредственно с генетическим аппаратом. По-видимому, в силу особенностей генома вируса гриппа грань между чисто противовирусным и мутагенным воздействием химических соединений легко переходима.
Наши эксперименты по изучению влияния химических соединений на антигенную специфичность вирусов гриппа, относящихся к серотипу АО, показали, что некоторые соединения из класса супермутагенов, могут вызвать изменения, не выходящие за пределы гомологичного серотипа. В частности, два первых представителя нитрозоалкилмочевин индуцировали мутации по этому признаку (Чуланова, 1968; Ахматуллина и др. 1974). Мы пользовались предложенной нами модификацией РЗГА, которая позволяла устанавливать коэффициент Ап и, основываясь на нем, определять степень различия в антигенной специфичности дикого и мутантных вирусов.
Эксперименты с большим набором химических соединений выявили среди них другой агент – 1,4-бис-диазоацетилбутан, активный в мутации по признаку антигенной специфичности. Мы использовали также метод иммунпресса, после воздействия мутагеном вирус пассировали в присутствии гомологичной сыворотки. Неизмененные вирусные частицы нейтрализовывали комплиментарными антителами, а для индуцированных мутантов создавали селективные условия. Полученные антигенные мутанты были изучены в перекрестной РЗГА с сывороткой к дикому и мутантному вирусу и в реакции преципитации и свидетельствовали о значительных антигенных сдвигах.
Таким образом, дальнейшее экспериментальное изучение индуцированных мутантов с применением большого набора химических соединений позволит внести сведения в изучаемую проблему.

Грипп. Лечение и профилактика.
Грипп – острое инфекционное заболевание верхних дыхательных путей. Сам по себе опасный, грипп усугубляет течений других хронических заболеваний и вызывает серьезные осложнения со стороны сердечно-сосудестой и центральной нервной систем, органов пищеварения, почек, и др. Наиболее опасен грипп для детей и людей преклонного возраста. Быстрота распространения гриппа, тяжесть заболевания, частота осложнений, иногда смертельный исход,- все это делает профилактику его особенно важной. Люди, занимающиеся спортом, гимнастикой, значительно реже подвергаются воздействиям вируса гриппа. Известно несколько разновидностей вируса гриппа – А, В, С, и др.; под воздействием факторов внешней среды их число может увеличится. В связи с тем, что иммунитет при гриппе кратковременный и специфичный, возможно неоднократное заболевание в один сезон. По статистическим данным, ежегодно болеют гриппом в среднем 20-35% населения.
Источником инфекции является больной человек; больные легкой формой как распространители вируса, наиболее опасны, так как своевременно не изолируются – ходят на работу, пользуются городским транспортом, посещают зрелищные места.
Инфекция передается от больного к здоровому воздушно-капельным путем при разговоре, чихании, кашле или через предметы домашнего обихода.
Скрытый период при гриппе длится от 1 – 12 часов до 3 суток. Заболевание начинается остро: резкое повышение температуры до 38-400, озноб, головная боль, боли в костях и мышцах, общая разбитость; возникают боли и першение в горле, расстройство вкуса и обоняния; через 12-24 часа появляются выделения из носа.
Температура держится 1-3 суток, иногда до 6-7 суток. Как правило к концу первой недели температура нормализуется. При правильном лечении и уходе выздоровление наступает через 7-9 дней.
При подозрении на грипп заболевшего следует изолировать и уложить в постель. Это надо сделать до прихода врача. Учитывая, возбудители гриппа очень неустойчивы во внешней среде и легко разрушаются под воздействием кислорода и дезинфицирующих средств, комнату необходимо регулярно проветривать. Не реже одного раза в день проводить влажную уборку помещения с использованием хлорной извести, формалина, соды, хлорамина, хозяйственного мыла.
Больной должен иметь индивидуальную посуду. Столовую и чайную посуду больного надо мыть кипятком с питьевой содой или обрабатывать 5%-ым раствором хлорамина. Обязательна систематическая дезинфекция нательного и постельного белья больного путем кипячения в мыльном растворе.
Все лекарственный препараты, назначенные врачом, следует хранить в специально отведенном месте. Помимо лекарственных препаратов, во всех периодах заболевания целесообразно обильное питье: чай с медом или лимоном, клюквенный морс, теплое молоко, фруктовые и овощные соки. Пища должна быть калорийной. Необходимо строго соблюдать указания врача. Самолечение недопустимо. Лекарства без назначения врача принимать нельзя. Особенно следует предостеречь в отношении антибиотиков и сульфаномидов – на вирус гриппа они не действуют, а при самовольном приеме, и неточных дозировках могут давать аллергические реакции. А вот чем можно воспользоваться безболезненно, так это ножные ванны, горчичники, лук, чеснок. Выделяясь через легкие, эфирные масла, содержащиеся в луке и чесноке, увеличивают отделение слизи и тем самым способствуют более легкому отхаркиванию при заболевании органов дыхания.
Здравоохранение располагает и рядом специфических антигрипозных средств, к числу которых относится в первую очередь живая вакцина и специальная сыворотка, Содержащие защитные белки. Внедрены в практику препараты – интерферон, оксолиновая мазь.
Закаливание, рациональное питание, свежий воздух, своевременное лечение хронических заболеваний помогут вам в профилактике простудных заболеваний, в частности, гриппа.

Вирусология - наука, изучающая морфологию, физиологию, генетику, экологию и эволюцию вирусов

Слово «вирус» означало яд. Этот термин применил ещё Л. Пастер для обозначения заразного начала. В настоящее время под вирусом подразумеваются мельчайшие реплицирующиеся микроорганизмы , находящиеся всюду, где есть живые клетки.

Открытие вирусов принадлежит русскому учёному Дмитрию Иосифовичу Ивановскому, который в 1892 году опубликовал работу по изучению мозаичной болезни табака. Д. И. Ивановский показал, что возбудитель этой болезни имеет очень малые размеры и не задерживается на бактериальных фильтрах, являющихся непреодолимым препятствием для мельчайших бактерий. Кроме того, возбудитель мозаичной болезни табака не способен культивироваться на искусственных питательных средах. Д. И. Ивановский открыл вирусы растений.

В 1898 году Леффлер и Фрош показали, что широко распространённая болезнь крупного рогатого скота - ящур вызывается агентом, который также проходит через бактериальные фильтры. Этот год считается годом открытия вирусов животных.

В 1901 году Рид и Кэррол показали, что фильтрующиеся агенты можно выделить из трупов людей, умерших от жёлтой лихорадки. Этот год считается годом открытия вирусов человека.

Д"Эррель и Туорт в 1917-1918 г.г. обнаружили вирусы у бактерий, назвав их «бактериофагами ». Позднее были выделены вирусы из насекомых, грибов, простейших.

Вирусы до сих пор остаются одними из главных возбудителей инфекционных и неинфекционных заболеваний человека. Около 1000 различных болезней имеют вирусную природу. Вирусы и вызываемые ими болезни человека яв­ляются объектом изучения медицинской вирусологии.

Принято считать, что вирусы произошли в результате обособления (автономизации) отдельных генетических элементов клетки , получивших, кроме того, способность передаваться от организма к организму. В нормальной клетке происходят перемещения нескольких типов генетических структур, например, матричной, или информационной, РНК (мРНК), транспозонов, интронов, плазмид. Такие мобильные элементы, возможно, были предшественниками, или прародителями, вирусов.

Прионы - принципиально новый класс возбудителей заболеваний, открытый и классифицируемый относительно недавно, несмотря на то, что некоторые заболевания, вызываемые этими возбудителями, были известны уже около столетия. Термин «прион» образован как анаграмма английских слов «белковая инфекционная (частица)» - "proteinaceous infectious (particles)". Прионы определяют, как «малую белковую инфекционную частицу, устойчивую к инактивирующим воздействиям, которые модифицируют нуклеиновые кислоты», иными словами прионы - это обычные белки организма, которые по неким причинам (которые пока неизвестны) начинают вести себя «неправильно».

Открытие прионов тесно связано с историей открытия и становления учения о медленных инфекциях , когда в 1954 г. Б. Сигурдссон (Швеция) изложил результаты своих многолетних исследований массовых заболеваний среди овец, завезенных в 1933 г. из Германии на о. Исландия для развития каракулеводства. Несмотря на явные клинические различия и неодинаковую локализацию повреждений органов и тканей, шведский ученый сумел обнаружить среди изученных им заболеваний принципиальное сходство, которое в современном виде может быть суммировано в виде четырех главных признаков, отличающих медленные инфекции:

  • необычно продолжительный (месяцы и годы) инкубационный период;
  • медленно прогрессирующий характер течения;
  • необычность поражения органов и тканей;

неизбежность смертельного исхода.



Похожие публикации