Телевизоры. Приставки. Проекторы и аксессуары. Технологии. Цифровое ТВ

Арифметические основы компьютера. Арифметические и логические основы работы компьютера процессор 6 арифметические и логические основы работы компьютера

Для автоматизации работы с данными, которые относятся к разным типам, унифицируют их форму представления. Это можно сделать с помощью кодирования данных на единой основе. В быту используют такие системы кодировки, как азбука Морзе, Брайля, коды морских сигналов. Основное понятие арифметики это число.Число– абстрактное выражение количества. Компьютер обрабатывает информацию, представленную только в числовой форме. Он оперирует с кодами и числами, представленными в некоторойсистеме счисления.

Система счисления– способ представления чисел(правило записи и получения чисел), с помощью фиксированного набора символов, обозначающих цифры. По способу представления чисел системы счисления разделяются на позиционные и непозиционные.

Непозиционныесистемы для записи числа используют множество символов. Значение символа не зависит от местоположения его в числе(римская СС).

Позиционная система счисления– когда от позиции цифры в числе зависит ее вес(555 –единицы, десятки, сотни). Всякая позиционная СС характеризуетсяоснованием,т.е. количеством цифр, используемых для записи числа. За основание СС можно принять любое натуральное число.

10ая– использует 10 цифр → 0, 1… 9

2ая– 2 цифры → 0, 1

Люди предпочитают 10ую(это удобно, видимо потому, что с древних времен считали по пальцам).

В вычислительной технике система кодирования основана на представлении данных в двоичной системе счисления. Компьютеры используют 2уюсистему, т.к. имеется ряд преимуществ:

Для ее реализации нужны устройства всего с двумя устойчивыми состояниями (есть ток, нет тока). Это надежнее, чем, например, 10ая;

возможно применение аппарата булевой алгебры;

двоичная арифметика проще десятичной;

представление информации с помощью 2-х состояний более надежно.

Недостаток: - быстрый рост разрядов.

В компьютере используются также 8аяи 16аясистемы.

Перевод чисел из 10ойв 2уюи наоборот выполняет машина.

При вводе информация кодируется, при выводе декодируется.

Обозначение цифр в 2ой системе:0, 1, 10, 11(3), 100(4), 101(5), 110(6), 111(7), 1000(8), 1001(9), 1010(10)и т.д.

Обозначение цифр в 8-ой системе: 0, 1, 2 … 7, 10(8), 11(9), 12(10)……17(15), 20(16), 21(17)и т.д.

Обозначение цифр в 16ой системе: 0, 1, 2 … 9, A(10), B(11),C(12) ... F(15), 10(16), 11(17) и т. д.

Целое число в позиционной СС может быть представлено в виде:

Aq=an-1qn-1+an-2qn-2+…+a0q0 , где

A– само число;

q– основание системы счисления;

ai– цифры, принадлежащие алфавиту данной системы счисления;

n– число целых разрядов числа.

Пусть в десятичной системе задано число37510.

Каждая позиция, занимаемая цифрами, называется разрядом числа.Разряды имеют названия иномера:разряд единиц (0), разряд десятков (1), разряд сотен (2). Названия определяютвес (012). Число в позиционной системе счисления представляет собой сумму степеней основания, умноженную на соответствующий коэффициент, который должен быть одной из цифр данной системы счисления. Достаточно просуммировать веса единичных разрядов.

37510=5*100+7*101+3*102 = 5+70+300=375

Это называется разложением числа по степеням основания.

Номера разрядов совпадают с показателем степени.

1011012=1*20+0*21+1*22+1*23+0*24+1*25=1+0+4+8+0+32=4510

101102=0*20+1*21+1*22+0*23+1*24=0+2+4+0+16=2210

1000012=1*20+0*21+0*22+0*23+0*24+1*25=1+32=3310

178=1*81+7*80= 8+1=1510

77648= 7*83+7*82+6*81+4*80 = 3584+448+48+4 =408410

1716= 1*161+7*160= 16+7 = 2310

3AF16=3*162+10*161+15*160=768+160+15=94310

1A16= 1*161+10*160= 16+10 = 2610

От того, какая система счисления будет использована в компьютере, зависят: скорость вычислений, емкость памяти, сложность алгоритмов выполнения арифметических и логических операций

Алгоритм перевода чисел делением на основание системы счисления: исходное число делим на основание новой СС. Затем получившееся частное опять делим на основание и т. д. , до тех пор, пока частное не станет меньше основания СС. Последнее частное и остатки записываем в порядке, обратном получению

В настоящее время в обыденной жизни для кодирования числовой информации используется десятичная система счисления с основанием 10, в которой используется 10 элементов обозначения: числа 0, 1, 2, … 8, 9. В первом (младшем) разряде указывается число единиц, во втором - десятков, в третьем - сотен и т.д.; иными словами, в каждом следующем разряде вес разрядного коэффициента увеличивается в 10 раз.

В цифровых устройствах обработки информации используется двоичная система счисления с основанием 2, в которой используется два элемента обозначения: 0 и 1. Веса разрядов слева направо от младших разрядов к старшим увеличиваются в 2 раза, то есть имеют такую последовательность: 8421. В общем виде эта последовательность имеет вид:

…2 5 2 4 2 3 2 2 2 1 2 0 ,2 -1 2 -2 2 -3 …

и используется для перевода двоичного числа в десятичное. Например, двоичное число 101011 эквивалентно десятичному числу 43:

2 5 ·1+2 4 ·0+2 3 ·1+2 2 ·0+2 1 ·1+2 0 ·1=43

В цифровых устройствах используются специальные термины для обозначения различных по объёму единиц информации: бит, байт, килобайт, мегабайт и т.д.

Бит или двоичный разряд определяет значение одного какого-либо знака в двоичном числе. Например, двоичное число 101 имеет три бита или три разряда. Крайний справа разряд, с наименьшим весом, называется младшим, а крайний слева, с наибольшим весом, - старшим .

Байт определяет 8-разрядную единицу информацию, 1 байт=23 бит, например, 10110011 или 01010111 и т.д., 1 кбайт = 2 10 байт, 1 Мбайт = 2 10 кбайт = 2 20 байт.

Для представления многоразрядных чисел в двоичной системе счисления требуется большое число двоичных разрядов. Запись облегчается, если использовать шестнадцатеричную систему счисления.

Основанием шестнадцатеричной системы счисления является число 16=2 4 , в которой используется 16 элементов обозначения: числа от 0 до 9 и буквы A, B, C, D, E, F. Для перевода двоичного числа в шестнадцатеричное достаточно двоичное число разделить на четырёхбитовые группы: целую часть справа налево, дробную - слева направо от запятой. Крайние группы могут быть неполными.

Каждая двоичная группа представляется соответствующим шестнадцатеричным символом (таблица 1). Например, двоичное число 0101110000111001 в шестнадцатеричной системе выражается числом 5C39.

Пользователю наиболее удобна десятичная система счисления. Поэтому многие цифровые устройства, работая с двоичными числами, осуществляют приём и выдачу пользователю десятичных чисел. При этом применяется двоично-десятичный код.

Двоично-десятичный код образуется заменой каждой десятичной цифры числа четырёхразрядным двоичным представлением этой цифры в двоичном коде (См. таблицу 1). Например, число 15 представляется как 00010101 BCD (Binary Coded Decimal). При этом в каждом байте располагаются две десятичные цифры. Заметим, что двоично-десятичный код при таком преобразовании не является двоичным числом, эквивалентным десятичному числу.

1.2 Логические основы ЭВМ

Раздел математической логики, изучающий связи между логическими переменными, имеющими только два значения, называется алгеброй логики. Алгебра логики разработана английским математиком Дж. Булем и часто называется булевой алгеброй. Алгебра логики является теоретической базой для построения систем цифровой обработки информации. Вначале на основе законов алгебры логики разрабатывается логическое уравнение устройства, которое позволяет соединить логические элементы таким образом, чтобы схема выполняла заданную логическую функцию.


Таблица 1 – Коды чисел от 0 до 15

Десятичное число Коды
Двоичный 16-ричный Двоично-десятичный
0 0000 0 000
1 0001 1 0001
2 0010 2 0010
3 0011 3 0011
4 0100 4 0100
5 0101 5 0101
6 0110 6 0110
7 0111 7 0111
8 1000 8 1000
9 1001 9 1001
10 1010 A 00010000
11 1011 B 00010001
12 1100 C 00010010
13 1101 D 00010011
14 1110 E 00010100
15 1111 F 00010101

1.2.1 Основные положения алгебры логики

Различные логические переменные могут быть связаны функциональными зависимостями. Функциональные зависимости между логическими переменными могут быть описаны логическими формулами или таблицами истинности.

В общем виде логическая формула функции двух переменных записывается в виде: y =f (X 1 , X 2), где X 1 , X 2 - входные переменные.

В таблице истинности отображаются все возможные сочетания (комбинации) входных переменных и соответствующие им значения функции y, получающиеся в результате выполнения какой-либо логической операции. При одной переменной полный набор состоит из четырёх функций, которые приведены в таблице 2.


Таблица 2 – Полный набор функций одной переменной

X Y1 Y2 Y3 Y4
0 1 0 1 0
1 0 1 1 0

Y1 - Инверсия, Y2 - Тождественная функция, Y3 - Абсолютно истинная функция и Y4 – Абсолютно ложная функция.

Инверсия (отрицание) является одной из основных логических функций, используемых в устройствах цифровой обработки информации.

При двух переменных полный набор состоит из 16 функций, однако в цифровых устройствах используются далеко не все.

Основными логическими функциями двух переменных, используемыми в устройствах цифровой обработки информации являются: дизъюнкция (логическое сложение), конъюнкция (логическое умножение), сумма по модулю 2 (неравнозначность), стрелка Пирса и штрих Шеффера. Условные обозначения логических операций, реализующих указанные выше логические функции одной и двух переменных, приведены в таблице 3.


Таблица 3 Названия и обозначения логических операций

Операцию инверсии можно выполнить чисто арифметически: и алгебраически: Из этих выражений следует, что инверсия x , т.е. дополняет x до 1. Отсюда и возникло ещё одно название этой операции - дополнение . Отсюда же можно сделать вывод, что двойная инверсия приводит к исходному аргументу, т.е. и это называется законом двойного отрицания.


Таблица 4 – Таблицы истинности основных функций двух переменных

Дизъюнкция Конъюнкция Исключающее ИЛИ Стрелка Пирса Штрих Шеффера
X1 X2 Y X1 X2 Y X1 X2 Y X1 X2 Y X1 X2 Y
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 1 1 0 1 0 0 1 1 0 1 0 0 1 1
1 0 1 1 0 0 1 0 1 1 0 0 1 0 1
1 1 1 1 1 1 1 1 0 1 1 0 1 1 0

Дизъюнкция. В отличие от обычного арифметического или алгебраического суммирования здесь наличие двух единиц даёт в результате единицу. Поэтому при обозначении логического суммирования предпочтение следует отдать знаку (∨) вместо знака (+) .

Первые две строчки таблицы истинности операции дизъюнкции (x 1 =0) определяют закон сложения с нулём : x ∨ 0 = x , а вторые две строчки (x 1 = 1) - закон сложения с единицей : x ∨ 1 = 1.

Конъюнкция. Таблица 4 убедительно показывает тождественность операций обычного и логическог умножений. Поэтому в качестве знака логического умножения возможно использование привычного знака обычного умножения в виде точки .

Первые две строчки таблицы истинности операции конъюнкции определяют закон умножения на ноль : x ·0 = 0, а вторые две - закон умножения на единицу: x ·1 = x.

Исключающее ИЛИ. Под функцией «Исключающее ИЛИ» понимают следующее: единица на выходе появляется тогда, когда только на одном входе присутствует единица. Если единиц на входах две или больше, или если на всех входах нули, то на выходе будет нуль.

Надпись на обозначении элемента ИСКЛЮЧАЮЩЕЕ ИЛИ «=1» (Рисунок 1, г) как раз и обозначает, что выделяется ситуация, когда на входах одна и только одна единица.

Эта операция аналогична операции арифметического суммирования, но, как и другие логические операции, без образования переноса. Поэтому она имеет другое название сумма по модулю 2 и обозначение ⊕, сходное с обозначением арифметического суммирования.

Стрелка Пирса и штрих Шеффера. Эти операции являются инверсиями операций дизъюнкции и конъюнкции и специального обозначения не имеют.

Рассмотренные логические функции являются простыми или элементарными, так как значение их истинности не зависит от истинности других каких либо функций, а зависит только от независимых переменных, называемых аргументами.

В цифровых вычислительных устройствах используются сложные логические функции, которые разрабатываются на основе элементарных функций.

Сложной является логическая функция, значение истинности которой зависит от истинности других функций. Эти функции являются аргументами данной сложной функции.

Например, в сложной логической функции аргументами являются X 1 ∨X 2 и .

1.2.2 Логические элементы

Для реализации логических функций в устройствах цифровой обработки информации используются логические элементы. Условные графические обозначения (УГО) логических элементов, реализующих рассмотренные выше функции, приведены на рисунке 1.

Рисунок 1 – УГО логических элементов: а) Инвертор, б) ИЛИ, в) И, г) Исключающее ИЛИ, д) ИЛИ-НЕ, е) И-НЕ.


Сложные логические функции реализуются на основе простых логических элементов, путём их соответствующего соединения для реализации конкретной аналитической функции. Функциональная схема логического устройства, реализующего сложную функцию, , приведённую в предыдущем параграфе, приведена на рисунке 2.

Рисунок 2 – Пример реализации сложной логической функции


Как видно из рисунка 2, логическое уравнение показывает, из каких ЛЭ и какими соединениями можно создать заданное логическое устройство.

Поскольку логическое уравнение и функциональная схема имеют однозначное соответствие, то целесообразно упростить логическую функцию, используя законы алгебры логики и, следовательно, сократить количество или изменить номенклатуру ЛЭ при её реализации.

1.2.3 Законы и тождества алгебры логики

Математический аппарат алгебры логики позволяет преобразовать логическое выражение, заменив его равносильным с целью упрощения, сокращения числа элементов или замены элементной базы.

1 Переместительный: X ∨ Y = Y ∨ X; X · Y = Y · X.

2 Cочетательный: X ∨ Y ∨ Z = (X ∨ Y) ∨ Z = X ∨(Y ∨ Z); X · Y · Z = (X · Y) · Z = X· (Y· Z).

3 Идемпотентности: X ∨ X = X; X · X = X.

4 Распределительный: (X ∨ Y)· Z = X· Z ∨ Y· Z.

5 Двойное отрицание: .

6 Закон двойственности (Правило де Моргана):

Для преобразования структурных формул применяется ряд тождеств:

X ∨ X · Y = X; X(X ∨ Y) = X - Правила поглощения.

X· Y ∨ X· = X, (X ∨ Y)·(X ∨ ) = X – Правила склеивания.

Правила старшинства логических операций.

1 Отрицание - логическое действие первой ступени.

2 Конъюнкция - логическое действие второй ступени.

3 Дизъюнкция - логическое действие третьей ступени.

Если в логическом выражении встречаются действия различных ступеней, то сначала выполняются первой ступени, затем второй и только после этого третьей ступени. Всякое отклонение от этого порядка должно быть обозначено скобками.

Транскрипт

1 Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет» Арифметические основы работы компьютера Методические указания к выполнению лабораторной работы по информатике для студентов всех специальностей дневной формы обучения Хабаровск Издательство ТОГУ 2012

2 УДК 004(076.5) Арифметические основы работы компьютера: методические указания к выполнению лабораторной работы по информатике для студентов всех направлений дневной формы обучения / сост. В. В. Стригунов, Н. И. Шадрина. Хабаровск: Изд-во Тихоокеан. гос. ун-та, с. Методические указания составлены на кафедре информатики. Включают общие сведения об арифметических основах работы компьютера, примеры решения задач и задания для самостоятельного и индивидуального выполнения. Печатается в соответствии с решениями кафедры информатики и методического совета факультета компьютерных и фундаментальных наук. Тихоокеанский государственный университет, 2012

3 ОБЩИЕ СВЕДЕНИЯ Любой компьютер предназначен для обработки, преобразования и хранения данных. Для выполнения этих функций компьютер должен обладать некоторым способом представления этих данных. Представление данных заключается в преобразовании их в вид, удобный для последующей обработки либо пользователем, либо компьютером. Форма представления данных определяется их конечным предназначением. В зависимости от этого данные имеют внутреннее и внешнее представление. Во внешнем представлении (для пользователей) все данные хранятся в виде файлов. Простейшими способами внешнего представления данных являются: вещественные и целые числа (числовые данные); последовательность символов (текст); изображение (графика, рисунки, схемы, фотографии). Внутреннее преставление данных определяется физическими принципами, по которым происходит обмен сигналами между аппаратными средствами компьютера, принципами организации памяти, логикой работы компьютера. Любые данные для обработки компьютером представляются последовательностями двух целых чисел единицы и нуля. Такая форма представления получила названия двоичной. Важным понятием при представлении данных в компьютере является система счисления. СИСТЕМЫ СЧИСЛЕНИЯ Система счисления это совокупность приемов и правил представления чисел с помощью символов, имеющих определенное количественное значение. Различают позиционные системы счисления и непозиционные. Непозиционная системы счисления система, в которой символы, обозначающие то или иное количество, не меняют своего значения в зависимости от местоположения (позиции) в изображении числа. Запись числа А в непозиционной системе счисления может быть представлена выражением: 3

4 А = D 1 + D D n = D, i где D 1, D 2,D n символы системы Непозиционной системой счисления является самая простая система с одним символом (палочкой). Для изображения какого-либо числа в этой системе надо записать количество палочек, равное данному числу. Это система самая неэффективная, так как форма записи очень громоздка. К непозиционной системе относится и римская, символы алфавита которой представлены ниже. n i 1 Римские цифры I V X L C D M Значение (обозначаемое количество) Так, например, в римской системе счисления в числе XXXII (тридцать два) значение цифры X в любой позиции равно десяти. Запись чисел в данной системе счисления осуществляется по правилам: 1) если цифра слева меньше, чем цифра справа, то левая цифра вычитается из правой (IX: 1<10, следовательно, 10 1 = 9; XС: 10<100, следовательно, = 90); 2) если цифра справа меньше или равна цифре слева, то эти цифры складываются (VII: 5+1+1=7; XXXV: =35). Так, число 1984 в римской системе счисления имеет вид MCMLXXXIV (M 1000, CM 900, LXXX 80, IV 4). В римской системе нельзя записывать подряд 4 одинаковых цифр. В общем случае непозиционные системы счисления характеризуются сложными способами записи чисел и правилами выполнения арифметических операций. Позиционная система счисления это система счисления, в которой значение цифры определяется ее местоположением (позицией) в изображении числа. 4

5 Алфавит позиционной системы счисления упорядоченный набор символов (цифр) {а 0, a 1, a n }, используемый для представления чисел в данной системе счисления. Основание позиционной системы счисления количество символов (цифр) алфавита q = n + 1, используемых для изображения чисел в данной системе счисления. Примером позиционной системы счисления является десятичная система счисления. Ее алфавит {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Основание q = 10. Например, в десятичной системе счисления число 333 записывается с помощью одной цифры 3, но значение каждой цифры определяется ее местоположением в числе: первая тройка число сотен в числе, вторая тройка число десятков, последняя число единиц. За основание системы счисления можно принять любое натуральное число два, три, четыре и т. д. Обычно в качестве алфавита берутся последовательные целые числа от 0 до (q 1) включительно. В тех случаях, когда общепринятых (арабских) цифр не хватает для обозначения всех символов алфавита системы счисления с основанием q > 10, используются буквенные обозначения цифр. Для примера в табл. 1 приведены алфавиты некоторых систем счисления. Таблица 1 Система счисления Основание Алфавит системы счисления Двоичная 2 0, 1 Троичная 3 0, 1, 3 Четверичная 4 0, 1, 2, 3 Пятеричная 5 0, 1, 2, 3, 4 Восьмеричная 8 0, 1, 2, 3, 4, 5, 6, 7 Десятичная 10 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Двенадцатеричная 12 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B Шестнадцатеричная 16 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F Для позиционной системы счисления справедливо равенство: А q = a n q n + a n-1 q n a 1 q 1 + a 0 q 0 + a -1 q -1 + a -2 q -2 + a -m q -m где А q (А q = a n a n-1 a 1 a 0,a -1 a -2 a -m) любое число, записанное в системе счисления с основанием q; (1) 5

6 a i цифры числа (i = n, n-1,1,0,-1, -2, -m); n +1 число целых разрядов; m число дробных разрядов. Равенство (1) называют развернутой формой записи числа. П р и м е р Записать числа 386,11 2, 561,42 8, 6ВF,A 16 в развернутой форме. Согласно равенству (1) имеем: 386,15 10 = ,11 2 = ,423 8 = ВF,A 16 = В F A 16-1 В вычислительной технике наибольшее распространение получили двоичная, восьмеричная, шестнадцатеричная системы счисления. ПЕРЕВОД ЧИСЕЛ В ПОЗИЦИОННЫХ СИСТЕМАХ СЧИСЛЕНИЯ Приведем таблицу для перевода первых 16 чисел в различные системы счисления (табл. 2) Десятичные числа q = 10 Двоичные числа q = 2 Восьмеричные числа q = 8 Таблица 2 Шестнадцатеричные числа q = A B C D E F 6

7 Правило Перевод чисел в десятичную систему счисления из системы счисления с основанием q Перевод в десятичную систему числа А, записанного в системе счисления с основание q в виде А q = a n a n-1 a 1 a 0,a -1 a -2 a -m сводится к вычислению значения многочлена (1) средствами десятичной арифметики. П р и м е р ы 1. Перевести число 7A5F 16 в десятичную систему. q = 16 n = 3. 7A5F 16 = A F 16 0 = = = Перевести число 1001, в десятичную систему. q = 2 n = 3 m = ,1101 (2) = = = ,5 + 0,0625 = 9, Перевести число 125,03 8 в десятичную систему. q = 8 n=2 m= = , = 85, Перевод чисел из десятичной системы счисления в систему счисления с основанием q Перевод вещественного числа из десятичной системы счисления в систему счисления с основанием q осуществляется в два этапа. Переводится раздельно целая и дробная часть числа, а затем при записи числа в новой системе счисления целая часть запятой (точкой) отделяется от дробной. Правило Перевод целых чисел из десятичной системы счисления в систему счисления с основанием q Для перевода целого числа А из десятичной системы счисления в систему счисления с основанием q необходимо А разделить с остатком (нацело) на чис- 7

8 ло q, записанное в десятичной системе. Затем неполное частное, полученное от такого деления, нужно снова разделить с остатком на q и т. д., пока последнее полученное неполное частное не станет равным нулю. Представлением числа А в новой системе счисления будет последовательность остатков деления, изображенных q-ичной цифрой и записанных в порядке, обратном порядку их получения. П р и м е р ы 1. Перевести число в двоичную систему счисления. Число Частное Остаток 405:2 = :2 = :2 = :2 = :2 = :2 = 6 0 6:2 = 3 0 3:2 = 1 1 1:2 = 0 1 Ответ: = Перевести число в шестнадцатеричную систему счисления. Число Частное Остаток 20959:16 = :16 = :16 = 5 1 5:16 = 0 5 Ответ: = 51DF 16. 8

9 Перевод правильных дробей из десятичной системы счисления Правило в систему счисления с основанием q Для перевода дроби из десятичной системы счисления в систему счисления с основанием q необходимо последовательно выполнять умножение исходной дроби и получаемых дробных произведений на основание системы счисления q до тех пор, пока не получится нулевая дробная часть или не будет достигнута требуемая точность вычислений. Представлением дроби в новой системе счисления будет последовательность полученных целых частей произведения, записанных в порядке их получения. П р и м е р ы 1. Перевести число A=0, в двоичную систему счисления. Целая часть 0, 000 Ответ: 0, = 0, Перевести число 74,67 10 в восьмеричную систему счисления с точностью до пятого знака. Переведем сначала в восьмеричную систему счисления целую часть числа, затем дробную часть. Число Частное Остаток 74:8 = 9 2 9:8 = 1 1 1:8 = = ,67 10 = 0, Ответ: 72,67 10 = 112, Целая часть 0, 56

10 Перевод чисел из двоичной системы счисления в системы с основанием q = 2 n Перевод чисел из двоичной системы в системы с основанием, равным степени двойки, выполняется по более простым правилам, чем с другим основанием. Правило Для перевода двоичного числа в систему с основанием q = 2 n нужно число разбить влево и вправо от запятой на группы по n цифр в каждой. Если в первой левой или последней правой группах окажется менее n цифр, то их необходимо дополнить слева и справа нулями. Затем для каждой группы, состоящей из n двоичных цифр, записать соответствующее число в системе счисления q = 2 n. 1. Число перевести в восьмеричную систему счисления. П р и м е р ы q = 8 = 2 3 n = 3. Заданное число разобьем справа налево на группы по 3 цифры (триады) и запишем соответствующие им числа в восьмеричной системе: = = Число, перевести в шестнадцатеричную систему счисления. q = 16 = 2 4, n = 4. Целую часть числа разобьем справа налево, а дробную слева направо группы по 4 цифры (тетрады), недостающие группы дополним нулями и запишем соответствующие им числа в шестнадцатеричной системе: , = , = 36Е3,D Е 3 D 8 10

11 Правило Перевод чисел из систем счисления с основанием q = 2 n в двоичную систему Для перевода числа из системы счисления с основанием q = 2 n в двоичную систему нужно каждую цифру числа заменить эквивалентным двоичным числом длиной n разрядов. П р и м е р ы 1. Число 537,45 8 перевести в двоичную систему счисления. q = 8 = 2 3 n = 3. Заменим каждую цифру числа 537,45 8 двоичным числом длиной три разряда (n = 3) 536,45 8 = , (5 101, 3 011, 6 110, 4 100, 5 101) 2. Число 5F7,A23 16 перевести в двоичную систему счисления. q = 16 = 2 4 n = 4. Заменим каждую цифру числа 5F7,A23 16 двоичным числом длиной четыре разряда (n = 4) 5F7,A23 16 = , (5 0101, F 1111, A 1010,) АРИФМЕТИЧЕСКИЕ ОПЕРАЦИИ В ПОЗИЦИОННЫХ СИСТЕМАХ СЧИСЛЕНИЯ Правила выполнения арифметических действий для всех позиционных систем счисления одинаковы и совпадают с правилами для десятичной системы счисления. При этом можно пользоваться таблицами сложения и умножения для системы счисления с основанием q. Для q = 2, 8 и 16 таблицы сложения и умножения представлены ниже. a+b q = 2 11 a b a b 0 1 a b

12 a+b q = 8 12 a b a b a b a+b q = 16 a b A B C D E F A B C D E F A B C D E F A B C D E F A B C D E F A B C D E F A B C D E F A B C D E F A B C D E F A B C D E F A B C D E F A A B C D E F B B C D E F A C C D E F A 1B D D E F A 1B 1C E E F A 1B 1C 1D F F A 1B 1C 1D 1E a b a b A B C D E F A B C D E F A C E A 1C 1E C F B 1E A 2D C C C C A F E D C B C E 24 2A C E 54 5A E 15 1C 23 2A F 46 4D 54 5B B 24 2D 36 3F A 63 6C 75 7E 87 A 0 A 14 1E C A 64 6E C 96 B 0 B C D E F 9A A5 C 0 C C C C A8 B4 D 0 D 1A E 5B F 9C A9 B6 C3 E 0 E 1C 2A E 8C 9A A8 B6 C4 D2 F 0 F 1E 2D 3C 4B 5A A5 B4 C3 D2 E1

13 Сложение Если результат сложения двух цифр в системе счисления с основанием q больше q (т. е. полученное число двузначное), то старшая цифра результата равна 1. Таким образом, при сложении в следующий разряд может переходить только единица, а результат сложения в любом разряде будет меньше, чем q. Результат сложения двух положительных чисел имеет столько же значащих цифр, что и максимальное из двух слагаемых, либо на одну цифру больше, но этой цифрой может быть только единица. П р и м е р ы Сложить числа: = ,53 8 = 1413, B9, С,8 16 = В45,Е, 3 3 B 9, С, 0 3 В 4 5, E Вычитание Если необходимо вычесть из цифры a цифру b и а b, то в столбце b таблицы сложения ищем значение числа а. Самая левая цифра в строке, в которой найдено значение числа а, и будет результатом вычитания. Если же a < b, то нужно заимствовать единицу из левого разряда, поэтому в столбце ищем число 1а, и левая цифра в соответствующей строке будет результатом вычитания. П р и м е р ы Выполнить вычитание чисел: ,1 2 = ,73 8 = 57, Е,D ,6 16 = ED,

14 , Е, D , 2 5 Е D, 7 8 Умножение Умножение выполняется столбиком с использованием соответствующих таблиц умножения и сложения. Отметим, что во всех позиционных системах счисления с любым основанием q умножение на числа вида q m, где m целое число, сводится просто к перенесению запятой умножаемого на m разрядов вправо или влево (в зависимости от знака m), так же, как и в десятичной системе счисления. П р и м е р ы Выполнить умножение чисел: = ,4 8 45,3 8 = 56467,B 16 70,D 16 = 2B7D,2F , 4 6 2, B , 3 7 0, D F B 2 D B 7 D, 2 F , 7 4 Деление Как для умножения, так и для деления нужны обе таблицы умножения и сложения в соответствующей системе счисления. Само деление выполняется уголком с последующим вычитание сомножителей. Выполнить деление: : = : 53 8 = ; 14

15 3. 4C98 16: 2B 16 =1C C B B 1 C ДВОИЧНО-ДЕСЯТИЧНАЯ СИСТЕМА СЧИСЛЕНИЯ Двоично-десятичная система счисления широко используется в цифровых устройствах, когда основная часть операций связана не с обработкой и хранением вводимой информации, а с ее вводом и выводом на какие-либо индикаторы с десятичным представлением полученных результатов (микрокалькуляторы, кассовые аппараты и т. п.). В двоично-десятичной системе счисления цифры от 0 до 9 представляют четырехразрядными двоичными комбинациями от 0001 до 1001, т.е. двоичными эквивалентами десяти первых шестнадцатеричных чисел (см. табл. 2). Преобразования из двоично-десятичной системы в десятичную систему и обратные преобразования выполняются путем прямой замены четырех двоичных цифр одной десятичной цифрой или обратной замены. П р и м е р Преобразовать число из двоично-десятичной системы в десятичную систему Ответ: = Две двоично-десятичные цифры составляют 1 байт. Таким образом, с помощью 1 байта можно представить значения от 0 до 99, а не от 0 до 255, как при использовании 8-разрядного двоичного кода. Используя 1 байт для представления каждых двух десятичных цифр, можно формировать двоичнодесятичные числа с любым требуемым числом десятичных разрядов. 0

16 Так, если число рассматривать как двоичное, то его десятичный эквивалент = в несколько раз больше десятичного эквивалента двоично-десятичного числа = = ПРЯМОЙ, ОБРАТНЫЙ, ДОПОЛНИТЕЛЬНЫЙ КОДЫ Целые числа хранятся в компьютере в двоичном формате. При вводе число записывается в привычной для нас десятичной системе счисления, а компьютер переводит его в двоичную систему. Для хранения целого числа в оперативной памяти выделяется фиксированное число байтов: один, два, четыре или восемь. Неотрицательные и отрицательные числа хранятся в памяти компьютера по-разному. Один, старший, двоичный разряд отводится под обозначение знака числа. Ноль в старшем разряде означает, что хранится неотрицательное число, единица означает, что число отрицательное. Применяются три формы кодирования целых чисел: прямой код, обратный код, дополнительный код. Прямой код Правило Для представления числа в прямом коде n-разрядного формата нужно перевести число в двоичную систему счисления и дополнить слева нулями до n знаков. Так как старший разряд числа отводится для знака, а оставшиеся n 1 разрядов для значащих цифр, то в знаковый разряд записать 1, если число отрицательное, и оставить 0, если число положительное. Например, формат хранения целого однобайтного числа имеет вид: Знак числа Двоичная запись числа 16

17 Таким образом, число 3 10 в прямом коде однобайтного формата будет представлено в виде: Число 3 10 в прямом коде однобайтного формата имеет вид: Обратный код. Дополнительный код Использование чисел со знаком (прямого кода представления чисел) усложняет структуру компьютера. В этом случае операция сложения двух чисел, имеющих разные знаки, должна быть заменена на операцию вычитания меньшей величины из большей и присвоения результату знака большей величины. Поэтому в современных компьютерах, как правило, отрицательные числа представляют в виде дополнительного или обратного кодов, что при суммировании двух чисел с разными знаками позволяет заменить вычитание на обычное сложение. Правило Для представления отрицательного числа в обратном коде n-разрядного формата нужно модуль отрицательного числа записать в прямом коде n двоичных разрядах (перевести число в двоичную систему счисления и дополнить слева нулями до n знаков). Значения всех знаков инвертировать (нули заменить единицами, единицы нулями). Правило Для представления отрицательного числа в дополнительном коде n- разрядного формата нужно представить его в обратном коде и прибавить 1 к последнему разряду числа. 17

18 Заметим, что положительные целые числа в прямом, обратном и дополнительном кодах изображаются одинаково двоичными кодами с цифрой 0 в знаковом разряде. П р и м е р ы 1. Найти дополнительный код в однобайтном формате числа Х = 7 10 Число является целым положительным, его дополнительный код совпадает с прямым кодом. Представим число в двоичной системе и дополним нулями слева до 8 знаков. Ответ: Х = Найти обратный код в однобайтном формате числа Х = Представим модуль числа Х в двоичной системе и дополним нулями слева до 8 знаков: Инвертируем значения всех знаков: Ответ: Х = Найти дополнительный код в двухбайтном формате числа Х = Представим модуль числа Х в двоичной системе и дополним нулями слева до 16 знаков: Инвертируем значения всех знаков: , прибавим к полученному обратному коду 1, получим: Ответ: Х = Дополнительный код числа Х имеет значение Найти его значение в десятичной системе счисления. Т.к. в первой позиции числа стоит 1, то искомое число будет отрицательным. Вычтем из заданного значения 1 (=). Инвертируем значения всех знаков: Переведем полученное число в десятичную систему = и не забудем, что число является отрицательным. Ответ: Х = 25. ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ 1. Перевести числа из заданной системы счисления в десятичную: ; 0, ; F0A9 16 ; 46,05 7 ; 471,

19 2. Перевести числа 95 и 568,125 из десятичной системы счисления в двоичную, восьмеричную, шестнадцатеричную. 3. Число перевести в четверичную систему счисления. 4. Упорядочить по убыванию числа: 55 7, 55 16, Найти сумму и разность чисел 11001,11 2 и 1010,011 2 в двоичной системе счисления. 6. Найти сумму и разность чисел 505С 16 и 5А6 16 в шестнадцатеричной системе счисления. 7. Найти произведение чисел 11 2 и в двоичной системе счисления. 8. Найти значение выражения в двоичной системе счисления. 9. В восьмеричной системе счисления число представлено в виде Выбрать правильный вариант представления в десятичной системе счисления. 8 4, 8 5, Найти значение числа в шестнадцатеричной и восьмеричной системах счисления. 11. В какой системе счисления выполнены действия: = 201? 12. В какой системе счисления выполнены действия: = 131? 13. Число, перевести в восьмеричную и шестнадцатеричную системы счисления. 14. Число 2А 16 перевести в восьмеричную систему счисления. 15. Число 23 х из системы счисления с основанием x перевели в десятичную систему счисления и получили Найти основание системы счисления х. 16. Число 135 х из системы счисления с основанием х перевели в десятичную систему счисления и получили Найти основание системы счисления х. 17. Обратный код числа Х имеет значение Найти его значение в десятичной системе счисления. 19

20 18. Найти дополнительный код в однобайтном формате числа Найти дополнительный код для числа Х = в однобайтном формате. 20. Дополнительный код числа Х имеет значение Найти его значение в десятичной системе счисления. 21. Даны три числа 33, 66, 88 в различных системах счисления. К этим числам прибавили по единице и получили во всех системах счисления 100. Найти значения всех этих чисел в десятичной системе счисления. 22. Задано число в шестнадцатеричной системе счисления F023A9,12С4. Как изменится число, если в его представлении запятую перенести на два знака влево? На три знака вправо? ИНДИВИДУАЛЬНЫЕ ЗАДАНИЯ Задание 1. Переведите данные числа из десятичной системы счисления в двоичную, восьмеричную и шестнадцатеричную системы счисления. Вещественные числа перевести в новую систему счисления с точностью до четвертого знака. Вариант Числа 78,15 57,17 82,21 33,38 25,27 85,14 20,18 90,42 48,28 55,49 Вариант Числа 76,45 43,86 77,35 71,41 30,19 92,24 74,23 30,18 41,29 36,73 Задание 2. Переведите числа из заданной системы счисления в десятичную. Вариант Числа А2C, E, F,A 16 3FD,E 16 19F,C 16 16D,

21 Вариант Числа,B 16 14F, A, C,7 16 2A3,B 16 3AB,A 16 1ВА,11 2 Вариант Числа,C 16 24D, A,C 16 15C,4 16 2E3,D 16 32B,F ,111 Задание 3. Переведите данные числа из десятичной системы счисления в двоично-десятичную. Вариант Числа Вариант Числа Задание 4. Переведите данные числа из двоично-десятичной системы счисления в десятичную. Вариант Числа Вариант Числа Вариант Числа

22 Вариант Числа Задание 5. Запишите дополнительные коды чисел в однобайтном формате. Вариант Числа Вариант Числа Задание 6. Запишите в десятичной системе счисления целые числа, если даны их дополнительные коды. Вариант Дополнительный код Вариант Дополнительный код Вариант Дополнительный код Вариант Дополнительный код

23 СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ 1. Акулов О. А. Информатика: базовый курс: учеб. пособие для студентов вузов / О. А. Акулов, Н. В. Медведев. М. : Омега-Л, с. 2. Могилев А. В. Информатика: учеб. пособие для студ. высш. учеб. заведений / А. В. Могилев, Н. И. Пак, Е. К. Хеннер. М. : Академия, с. 3. Могилев А. В. Практикум по информатике: учеб. пособие для студ. высш. учеб. заведений / А. В. Могилев, Н. И. Пак, Е. К. Хеннер. М. : Академия, с. ОГЛАВЛЕНИЕ Общие сведения... 3 Системы счисления... 3 Перевод чисел в позиционных системах счисления... 6 Перевод чисел в десятичную систему счисления из системы счисления с основанием q... 7 Перевод чисел из десятичной системы счисления в систему счисления с основанием q... 7 Перевод чисел из двоичной системы счисления в системы с основанием q = 2 n.. 10 Перевод чисел из систем счисления с основанием q = 2 n в двоичную систему Арифметические операции в позиционных системах счисления Сложение Вычитание Умножение Деление Двоично-десятичная система счисления Прямой, обратный, дополнительный коды Задания для самостоятельного решения Индивидуальные задания Список рекомендуемой литературы

24 АРИФМЕТИЧЕСКИЕ ОСНОВЫ РАБОТЫ КОМПЬЮТЕРА Методические указания к выполнению лабораторной работы по информатике для студентов всех специальностей дневной формы обучения Валерий Витальевич Стригунов Нина Ивановна Шадрина Главный редактор Л. А. Суевалова Редактор Н. Г. Петряева Подписано в печать Формат / 16. Бумага писчая. Гарнитура «Таймс». Печать цифровая. Усл. печ. л. 1,39. Тираж 200 экз. Заказ Издательство Тихоокеанского государственного университета, Хабаровск, ул. Тихоокеанская, 136. Отдел оперативной полиграфии издательства Тихоокеанского государственного университета, Хабаровск, ул. Тихоокеанская,


Системы счисления Система счисления это способ записи чисел с помощью заданного набора специальных знаков (цифр). Существуют позиционные и непозиционные системы счисления. В непозиционных системах вес

Федеральное агентство по образованию ГОУ СПО «Вологодский машиностроительный техникум» Системы счисления Учебное пособие по дисциплинам «Информатика» и «Информационные технологии в профессиональной деятельности»

Системы счисления и компьютерная арифметика Содержание Введение... 3 I. Кодирование числовой информации.... 4 1.1. Представление числовой информации с помощью систем счисления... 4 1.2. Непозиционные системы

Лабораторная работа 3. Системы счисления Цель: овладеть навыками оперирования числами в различных системах счисления. Задача научиться: ичную; 1) осуществлять перевод из десятичной системы счисления в

Понятие системы счисления Для записи информации о количестве объектов используются числа. Числа записываются с использованием особых знаковых систем, которые называются системами счисления (с/с). Алфавит

Лабораторная работа 3 «Арифметические основы компьютеров» Цель работы: изучить теоретические основы и приобрести практические навыки преобразований представления чисел в системах счисления, применяемых

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Лабораторная работа 1. Тема: Перевод из одной системы счисления в другую. Цель: научиться переводить числа из одной системы счисления в другую. Методические указания. Под системой счисления понимается

ПРЕДСТАВЛЕНИЕ ИНФОРМАЦИИ В КОМПЬЮТЕРЕ Информация в ЭВМ кодируется, как правило, в двоичной или в двоично-десятичной системе счисления. Система счисления это способ наименования и изображения чисел с помощью

Тема 7. Представление информации в ЭВМ.. Единицы информации. Бит - (bit-biry digit - двоичный разряд) наименьшая единица информации - количество её, необходимое для различения двух равновероятных событий.

Кодирование числовой информации Для представления чисел используются системы счисления. Система счисления это знаковая система, в котор ой числа записываются по определенным правилам с помощью символов

КОДИРОВАНИЕ ЧИСЛОВОЙ ИНФОРМАЦИИ В РАЗНЫХ СИСТЕМАХ СЧИСЛЕНИЯ 1 Понятие об основных системах счисления Под системой счисления понимается способ представления любого числа с помощью некоторого алфавита символов,

Системы счисления В наше время человек всё время сталкивается с числами. Все мы с детства знакомы с общепринятой записью чисел при помощи арабских цифр. Однако этот способ записи использовался далеко не

Практическая работа. Формы представления числовой информации на компьютере. Часть I. Системы счисления. Под системой счисления понимается способ представления любого числа с помощью некоторого алфавита

Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа 6» г. Курчатова Курской области СИСТЕМЫ СЧИСЛЕНИЯ Составитель: учитель информатики Матвейчук Марина Вячеславовна

Лекция 5 Тема: «Кодирование информации. Системы счисления» Цели: Систематизировать и обобщить ЗУН учащихся, полученные при изучении темы «Арифметические операции в позиционных системах счисления»; Развивать

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕ- ДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВА- ТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИ-

Задачи на перевод чисел из одной системы счисления в другую. Система счисления это совокупность приемов и правил, по которым числа записываются и читаются. Существуют позиционные и непозиционные системы

ЛЕКЦИЯ 4 СИСТЕМЫ СЧИСЛЕНИЯ 1. Позиционные и непозиционные системы счисления 2. Методы перевода чисел 3. Двоичная арифметика 1.Позиционные и непозиционные системы счисления Определение 1.Система счисления

Системы счисления Система счисления способ описания чисел с помощью знаков определенного алфавита по известным правилам. Позиционные системы счисления В позиционной системе счисления значение цифры зависит

Арифметические основы компьютеров (По материалам http://book.kbsu.ru/) 1. Что такое система счисления? Система счисления это совокупность приемов и правил, по которым числа записываются и читаются. Существуют

Кодирование это процесс представления информации (сообщения) в виде кода Все множество символов, используемых для кодирования называется алфавитом кодирования Система счисления это совокупность приемов

Лекция 5 Основы представления информации в цифровых автоматах Позиционные системы счисления Системой счисления называется совокупность приемов и правил для записи чисел цифровыми знаками. Любая предназначенная

Введение в системы счисления А.А. Вылиток Система счисления это способ записи чисел с помощью заданного набора специальных знаков (цифр). Существуют позиционные и непозиционные системы счисления. В непозиционных

СИСТЕМЫ СЧИСЛЕНИЯ Когда речь заходит о количественном измерении чего-либо, людям приходится использовать ту или иную систему счисления. Систем счисления существует множество, одни более распространены,

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Вятский государственный гуманитарный университет» Дополнительная подготовка школьников по дисциплине

Лекция: Понятие об архитектуре компьютера. Системы счисления. Цель: сформировать первичные представления о читаемой дисциплине, рассмотреть возможности перевода чисел в различные системы счисления и так

Измерение информации Пример. Вы оказались в стране с незнакомым языком и вам нужно добраться до гостиницы. Вы хотите сесть в автобус, пред вами их два. Вы подходите к водителю одного из них и показываете

Системы счисления. Двоичная система счисления. 1 Система счисления это знаковая система, определяющая способ записи (изображения) чисел. Все системы счисления, которые существовали раньше и которые используются

Системы счисления Система счисления способ записи чисел с помощью заданного набора специальных символов (цифр). В вычислительной технике применяются позиционные системы счисления, в которых значение цифры

Глава 13. ЦИФРОВЫЕ И КОМБИНАЦИОННЫЕ ЭЛЕКТРОННЫЕ УСТРОЙСТВА 13.1. ДВОИЧНАЯ СИСТЕМА СЧИСЛЕНИЯ Системой счисления называют совокупность символов (цифр) и приемов записи чисел. В зависимости от способа записи

ПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ Известно множество способов представления чисел. В любом случае число изображается символом или группой символов (словом) некоторого алфавита. Будем называть такие символы

Министерство сельского хозяйства РФ Федеральное государственное образовательное учреждение высшего профессионального образования «Мичуринский государственный аграрный университет» УТВЕРЖДЕНО протокол 10

Оглавление Краткие теоретические сведения... 3 Двоичная система счисления... 5 Восьмеричная и шестнадцатеричная системы счисления... 5 Перевод числа из одной позиционной системы счисления в другую... 6

По теме Определение. Непозиционные и позиционные системы счисления Развернутая форма записи числа в позиционной системе счисления Двоичная система счисления. Таблица эквивалентов чисел. Перевод чисел между

Правила перевода чисел из одной системы счисления в другую Перевод чисел из одной системы счисления в другую составляет важную часть машинной арифметики. Рассмотрим основные правила перевода. 1. Для перевода

Тема 1 Системы счисления Теория Для начала надо вспомнить, что же такое системы счисления. Система счисления (СС) это совокупность правил записи чисел посредством конечного набора символов (цифр). Системы

Приложение 1 Практикум к главе 2 «Представление информации в компьютере» Практическая работа к п. 2.1 Пример 2.1. Представьте в виде разложения по степеням основания числа 2466,675 10, 1011,11 2. Для десятичного

Лекция 4. Арифметические основы компьютеров 4.1. Что такое система счисления? Система счисления - это способ записи чисел с помощью заданного набора специальных знаков (цифр). Существуют позиционные и

Лабораторная работа. Тема: «Системы счисления» Цель работы: Знакомство с системами счисления. Перевод числа из двоичной системы счисления у восьмеричную и шестнадцатеричную системы и наоборот. Перевод

Коротко о главном Тема: Системы счисления Системы счисления - это способ представления чисел и соответствующие ему правила действия над числами. Разнообразные системы счисления, который существовали раньше

ПРАКТИЧЕСКАЯ РАБОТА «МАТЕМАТИЧЕСКИЕ ОСНОВЫ ЭВМ» Цель работы: Изучить системы счисления, правила перевода из одной системы счисления в другую, формы представления чисел и выполнение арифметических операций

Министерство образования и науки Российской Федерации Федеральное агентство по образованию Саратовский государственный технический университет Балаковский институт техники, технологии и управления СИСТЕМЫ

Решение задач на тему «Представление чисел в компьютере» Типы задач: 1. Целые числа. Представление чисел в формате с фиксированной запятой. 2. Дробные числа. Представление чисел в формате с плавающей запятой.

Лабораторная работа 1 Системы счисления Цель работы: овладеть приемами перевода чисел из одной системы счисления в другую Теоретические сведения Под системой счисления понимается способ представления чисел

Системы счисления План лекции П. 1. Понятие системы счисления. Виды систем счисления.... 1 П. 2. Основные определения позиционной системы счисления.... 1 П. 3. Перевод чисел из одной системы счисления

Дано: a EA6, b. Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству a C b?) 000) 00) 000) 00 Решение: При переводе a и b в двоичное представление, получим: a=ea 6

Решение задач на тему «Представление чисел в компьютере». Типы задач. 1. Целые числа. Представление чисел в формате с фиксированной запятой. 2. Дробные числа. Представление чисел в формате с плавающей

Дано: a EA6, b 3 8. Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству a C b?) 000) 00 3) 000) 00 Решение: При переводе a и b в двоичное представление, получим: a=ea

Федеральное государственное бюджетное учреждение высшего профессионального образования «Саратовский государственный технический университет имени Гагарина Ю.А.» СИСТЕМЫ СЧИСЛЕНИЯ. КОДИРОВАНИЕ ДВОИЧНЫХ

1 СИСТЕМЫ СЧИСЛЕНИЯ И ПРЕДСТАВЛЕНИЕ ИНФОРМАЦИИ В ЭВМ 1.1 Понятие об основных системах счисления Под системой счисления понимается способ представления любого числа с помощью некоторого алфавита символов,

Информатика. Лекция 2 Системы счисления, двоичная арифметика. Число абстракция, используемая для описания количественной характеристики объекта. Системы счисления Система счисления методы записи чисел

1. Что такое система счисления? Система счисления это совокупность приемов и правил, по которым числа записываются и читаются. Существуют позиционные и непозиционные системы счисления. В непозиционных

Перевод чисел в позиционных системах счисления. Любая позиционная система характеризуется своим основанием. Основание позиционной системы счисления - это количество различных знаков или символов, используемых

Электронный учебник по информатике Системы Перевод чисел из двоичной системы Арифметичиские операции в позиционных системах формате с плавающей. Постановка проблемы: Изучая предмет информатики в школе,

Подготовка к ЕГЭ. Занятие 1 1 октября 2017 г. 27 заданий на 35 баллов: Часть I: 23 задания на короткий ответ (число или слово) 23 балла Часть II: 4 задания на развернутый ответ (код или описание результата)

Кодирование представление символов одного алфавита символами другого по определённым правилам. Система счисления способ представления любого числа с помощью алфавита символов, называемых цифрами. Непозиционная

16 (повышенный уровень, время мин) Тема: Кодирование чисел. Системы счисления. Что нужно знать: принципы кодирования чисел в позиционных системах счисления чтобы перевести число, скажем, 15, из системы

Системы счисления 1. Введение 2. Двоичная система 3. Восьмеричная система 4. Шестнадцатеричная система К.Ю. Поляков, 2007-2012 Системы счисления Тема 1. Введение К.Ю. Поляков, 2007-2012 Определения Система

Глава 3 Информационно-логические основы построения вычислительных машин Информационно-логические основы построения вычислительных машин охватывают круг вопросов, связанных с формами и системами представления

Существуют позиционные и непозиционные системы счисления.

В непозиционных системах вес цифры (т.е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа. Так, в римской системе счисления в числе ХХХII (тридцать два) вес цифры Х в любой позиции равен просто десяти.

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757,7 первая семерка означает 7 сотен, вторая – 7 единиц, а третья – 7 десятых долей единицы.

Сама же запись числа 757,7 означает сокращенную запись выражения

700 + 50 + 7 + 0,7 = 7 10 2 + 5 10 1 + 7 10 0 + 7 10 -1 = 757,7.

Любая позиционная система счисления характеризуется своим основанием.

За основание системы можно принять любое натуральное число - два, три, четыре и т.д. Следовательно, возможно бесчисленное множество позиционных систем: двоичная, троичная, четверичная и т.д. Запись чисел в каждой из систем счисления с основанием q означает сокращенную запись выражения

a n-1 q n-1 + a n-2 q n-2 + ... + a 1 q 1 + a 0 q 0 + a -1 q -1 + ... + a -m q -m ,

где a i – цифры системы счисления; n и m – число целых и дробных разрядов, соответственно.

Например:

Как порождаются целые числа в позиционных системах счисления?

В каждой системе счисления цифры упорядочены в соответствии с их значениями: 1 больше 0, 2 больше 1 и т.д.

Продвинуть цифру 1 значит заменить её на 2, продвинуть цифру 2 значит заменить её на 3 и т.д. Продвижение старшей цифры (например, цифры 9 в десятичной системе) означает замену её на 0. В двоичной системе, использующей только две цифры – 0 и 1, продвижение 0 означает замену его на 1, а продвижение 1 – замену её на 0.

Целые числа в любой системе счисления порождаются с помощью Правила счета :

Применяя это правило, запишем первые десять целых чисел

· в двоичной системе: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001;

· в троичной системе: 0, 1, 2, 10, 11, 12, 20, 21, 22, 100;

· в пятеричной системе: 0, 1, 2, 3, 4, 10, 11, 12, 13, 14;

· восьмеричной системе: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11.

Какие системы счисления используют специалисты для общения с компьютером?

Кроме десятичной широко используются системы с основанием, являющимся целой степенью числа 2 , а именно :

· двоичная (используются цифры 0, 1);

· восьмеричная (используются цифры 0, 1, ..., 7);

· шестнадцатеричная (для первых целых чисел от нуля до девяти используются цифры 0, 1, ..., 9, а для следующих чисел - от десяти до пятнадцати – в качестве цифр используются символы A, B, C, D, E, F).

Полезно запомнить запись в этих системах счисления первых двух десятков целых чисел:

10 - я 2 - я 8 - я 16 - я
10 - я 2 - я 8 - я 16 - я
A
B
C
D
E
F

Из всех систем счисления особенно проста и поэтому интересна для технической реализации в компьютерах двоичная система счисления.

Как перевести целое число из десятичной системы в любую другую позиционную систему счисления?

Пример: Перевести число 75 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

Ответ: 75 10 = 1 001 011 2 = 113 8 = 4B 16 .

Сложение

Таблицы сложения легко составить, используя Правило Счета.

Сложение в шестнадцатиричной системе

При сложении цифры суммируются по разрядам, и если при этом возникает избыток, то он переносится влево.

Пример 1. Сложим числа 15 и 6 в различных системах счисления.

Пример 2. Сложим числа 15, 7 и 3.

Шестнадцатеричная: F 16 +7 16 +3 16 Ответ: 5+7+3 = 25 10 = 11001 2 = 31 8 = 19 16 . Проверка: 11001 2 = 2 4 + 2 3 + 2 0 = 16+8+1=25, 31 8 = 3*8 1 + 1*8 0 = 24 + 1 = 25, 19 16 = 1*16 1 + 9*16 0 = 16+9 = 25.

Пример 3. Сложим числа 141,5 и 59,75.

Ответ: 141,5 + 59,75 = 201,25 10 = 11001001,01 2 = 311,2 8 = C9,4 16

Проверка. Преобразуем полученные суммы к десятичному виду:
11001001,01 2 = 2 7 + 2 6 + 2 3 + 2 0 + 2 -2 = 201,25
311,2 8 = 3*8 2 + 1 8 1 + 1*8 0 + 2*8 -1 = 201,25
C9,4 16 = 12*16 1 + 9*16 0 + 4*16 -1 = 201,25

Вычитание

Пример 4. Вычтем единицу из чисел 10 2 , 10 8 и 10 16

Пример 5. Вычтем единицу из чисел 100 2 , 100 8 и 100 16 .

Пример 6. Вычтем число 59,75 из числа 201,25.

Ответ: 201,25 10 – 59,75 10 = 141,5 10 = 10001101,1 2 = 215,4 8 = 8D,8 16 .

Проверка. Преобразуем полученные разности к десятичному виду:
10001101,1 2 = 2 7 + 2 3 + 2 2 + 2 0 + 2 –1 = 141,5;
215,4 8 = 2*8 2 + 1*8 1 + 5*8 0 + 4*8 –1 = 141,5;
8D,8 16 = 8*16 1 + D*16 0 + 8*16 –1 = 141,5.

Умножение

Выполняя умножение многозначных чисел в различных позиционных системах счисления, можно использовать обычный алгоритм перемножения чисел в столбик, но при этом результаты перемножения и сложения однозначных чисел необходимо заимствовать из соответствующих рассматриваемой системе таблиц умножения и сложения.

Умножение в двоичной системе Умножение в восьмеричной системе

Ввиду чрезвычайной простоты таблицы умножения в двоичной системе, умножение сводится лишь к сдвигам множимого и сложениям.

Пример 7. Перемножим числа 5 и 6.

Ответ: 5*6 = 30 10 = 11110 2 = 36 8 .


11110 2 = 2 4 + 2 3 + 2 2 + 2 1 = 30;
36 8 = 3 8 1 + 6 8 0 = 30.

Пример 8. Перемножим числа 115 и 51.

Ответ: 115*51 = 5865 10 = 1011011101001 2 = 13351 8 .

Проверка. Преобразуем полученные произведения к десятичному виду:
1011011101001 2 = 2 12 + 2 10 + 2 9 + 2 7 + 2 6 + 2 5 + 2 3 + 2 0 = 5865;
13351 8 = 1*8 4 + 3*8 3 + 3*8 2 + 5*8 1 + 1*8 0 = 5865.

Деление

Деление в любой позиционной системе счисления производится по тем же правилам, как и деление углом в десятичной системе. В двоичной системе деление выполняется особенно просто, ведь очередная цифра частного может быть только нулем или единицей.

Пример 9. Разделим число 30 на число 6.

Ответ: 30: 6 = 5 10 = 101 2 = 5 8 .

Пример 10. Разделим число 5865 на число 115.

Восьмеричная: 13351 8:163 8

Ответ: 5865: 115 = 51 10 = 110011 2 = 63 8 .


110011 2 = 2 5 + 2 4 + 2 1 + 2 0 = 51; 63 8 = 6*8 1 + 3*8 0 = 51.

Пример 11. Разделим число 35 на число 14.

Восьмеричная: 43 8: 16 8

Ответ: 35: 14 = 2,5 10 = 10,1 2 = 2,4 8 .

Проверка. Преобразуем полученные частные к десятичному виду:
10,1 2 = 2 1 + 2 -1 = 2,5;
2,4 8 = 2*8 0 + 4*8 -1 = 2,5.

Сложение и вычитание

При сложении обратных кодов чисел А и В имеют место четыре основных и два особых случая:

1. А и В положительные. При суммировании складываются все разряды, включая разряд знака. Так как знаковые разряды положительных слагаемых равны нулю, разряд знака суммы тоже равен нулю. Например:

Получен правильный результат.

Получен правильный результат в обратном коде. При переводе в прямой код биты цифровой части результата инвертируются: 1 0000111 = –7 10 .

Компьютер исправляет полученный первоначально неправильный результат (6 вместо 7) переносом единицы из знакового разряда в младший разряд суммы.

Полученный первоначально неправильный результат (обратный код числа –11 10 вместо обратного кода числа –10 10) компьютер исправляет переносом единицы из знакового разряда в младший разряд суммы.

При переводе результата в прямой код биты цифровой части числа инвертируются: 1 0001010 = –10 10 .

При сложении может возникнуть ситуация, когда старшие разряды результата операции не помещаются в отведенной для него области памяти. Такая ситуация называется переполнением разрядной сетки формата числа . Для обнаружения переполнения и оповещения о возникшей ошибке в компьютере используются специальные средства. Ниже приведены два возможных случая переполнения.

5. А и В положительные, сумма А+В больше, либо равна 2 n–1 , где n – количество разрядов формата чисел (для однобайтового формата n=8, 2 n–1 = 27 = 128). Например:

Семи разрядов цифровой части числового формата недостаточно для размещения восьмиразрядной суммы (162 10 = 10100010 2), поэтому старший разряд суммы оказывается в знаковом разряде. Это вызывает несовпадение знака суммы и знаков слагаемых, что является свидетельством переполнения разрядной сетки.

Здесь знак суммы тоже не совпадает со знаками слагаемых, что свидетельствует о переполнении разрядной сетки.

Все эти случаи имеют место и при сложении дополнительных кодов чисел:

1. А и В положительные. Здесь нет отличий от случая 1, рассмотренного для обратного кода.

2. А положительное, B отрицательное и по абсолютной величине больше, чем А. Например:

Получен правильный результат в дополнительном коде. При переводе в прямой код биты цифровой части результата инвертируются и к младшему разряду прибавляется единица: 1 0000110 + 1 = 1 0000111 = –7 10 .

3. А положительное, B отрицательное и по абсолютной величине меньше, чем А. Например:

Получен правильный результат. Единицу переноса из знакового разряда компьютер отбрасывает.

4. А и В отрицательные. Например:

Получен правильный результат в дополнительном коде. Единицу переноса из знакового разряда компьютер отбрасывает.

Случаи переполнения для дополнительных кодов рассматриваются по аналогии со случаями 5 и 6 для обратных кодов.

Сравнение рассмотренных форм кодирования целых чисел со знаком показывает:

· на преобразование отрицательного числа в обратный код компьютер затрачивает меньше времени, чем на преобразование в дополнительный код, так как последнее состоит из двух шагов - образования обратного кода и прибавления единицы к его младшему разряду;

· время выполнения сложения для дополнительных кодов чисел меньше, чем для их обратных кодов, потому что в таком сложении нет переноса единицы из знакового разряда в младший разряд результата.

Умножение и деление

Во многих компьютерах умножение производится как последовательность сложений и сдвигов. Для этого в АЛУ имеется регистр, называемый накапливающим сумматором, который до начала выполнения операции содержит число ноль. В процессе выполнения операции в нем поочередно размещаются множимое и результаты промежуточных сложений, а по завершении операции - окончательный результат.

Другой регистр АЛУ, участвующий в выполнении этой операции, вначале содержит множитель. Затем по мере выполнения сложений содержащееся в нем число уменьшается, пока не достигнет нулевого значения.

Для иллюстрации умножим 110011 2 на 101101 2 .

Деление для компьютера является трудной операцией. Обычно оно реализуется путем многократного прибавления к делимому дополнительного кода делителя.

Сложение и вычитание

При сложении и вычитании сначала производится подготовительная операция, называемая выравниванием порядков.

В результате выравнивания порядков одноименные разряды чисел оказываются расположенными в соответствующих разрядах обоих регистров, после чего мантиссы складываются или вычитаются.

В случае необходимости полученный результат нормализуется путем сдвига мантиссы результата влево. После каждого сдвига влево порядок результата уменьшается на единицу.

Пример 1. Сложить двоичные нормализованные числа 0.10111 2 –1 и 0.11011*2 10 . Разность порядков слагаемых здесь равна трем, поэтому перед сложением мантисса первого числа сдвигается на три разряда вправо:

Пример 2. Выполнить вычитание двоичных нормализованных чисел 0.10101*2 10 и 0.11101*2 1 . Разность порядков уменьшаемого и вычитаемого здесь равна единице, поэтому перед вычитанием мантисса второго числа сдвигается на один разряд вправо:

Результат получился не нормализованным, поэтому его мантисса сдвигается влево на два разряда с соответствующим уменьшением порядка на две единицы: 0.1101*2 0 .

Умножение

Пример 3. Выполнить умножение двоичных нормализованных чисел:

(0.11101*2 101)*(0.1001*2 11) = (0.11101*0.1001)* 2 (101+11) = 0.100000101*2 1000 .

Деление

Пример 4. Выполнить деление двоичных нормализованных чисел:

0.1111*2 100: 0.101*2 11 = (0.1111: 0.101) * 2 (100–11) = 1.1*2 1 = 0.11 2 10 .

Использование представления чисел с плавающей точкой существенно усложняет схему арифметико-логического устройства.

Упражнения

4.1. Используя Правило Счета, запишите первые 20 целых чисел в десятичной, двоичной, троичной, пятеричной и восьмеричной системах счисления.
[ Ответ ]

4.2. Какие целые числа следуют за числами:

[ Ответ ]

4.4. Какой цифрой заканчивается четное двоичное число? Какой цифрой заканчивается нечетное двоичное число? Какими цифрами может заканчиваться четное троичное число?
[ Ответ ]

4.5. Какое наибольшее десятичное число можно записать тремя цифрами:

o а) в двоичной системе;

o б) в восьмеричной системе;

o в) в шестнадцатеричной системе?

4.6. В какой системе счисления 21 + 24 = 100?

Решение. Пусть x - искомое основание системы счисления. Тогда 100 x = 1 · x 2 + 0 · x 1 + 0 · x 0 , 21 x = 2 · x 1 + 1 · x 0 , 24 x = 2 · x 1 + 4 · x 0 . Таким образом, x 2 = 2x + 2x + 5 или x 2 - 4x - 5 = 0. Положительным корнем этого квадратного уравнения является x = 5.
Ответ. Числа записаны в пятеричной системе счисления.

4.7. В какой системе счисления справедливо следующее:

o а) 20 + 25 = 100;

o б) 22 + 44 = 110?

4.8. Десятичное число 59 эквивалентно числу 214 в некоторой другой системе счисления. Найдите основание этой системы.
[ Ответ ]

4.9. Переведите числа в десятичную систему, а затем проверьте результаты, выполнив обратные переводы:

[ Ответ ]

4.10. Переведите числа из десятичной системы в двоичную, восьмеричную и шестнадцатеричную, а затем проверьте результаты, выполнив обратные переводы:

а) 125 10 ; б) 229 10 ; в) 88 10 ; г) 37,25 10 ; д) 206,125 10 .
[ Ответ ]

4.11. Переведите числа из двоичной системы в восьмеричную и шестнадцатеричную, а затем проверьте результаты, выполнив обратные переводы:

а) 1001111110111,0111 2 ; г) 1011110011100,11 2 ;
б) 1110101011,1011101 2 ; д) 10111,1111101111 2 ;
в) 10111001,101100111 2 ; е) 1100010101,11001 2 .

[ Ответ ]

4.12. Переведите в двоичную и восьмеричную системы шестнадцатеричные числа:

а) 2СE 16 ; б) 9F40 16 ; в) ABCDE 16 ; г) 1010,101 16 ; д) 1ABC,9D 16 .
[ Ответ ]

4.13. Выпишите целые числа:

o а) от 101101 2 до 110000 2 в двоичной системе;

o б) от 202 3 до 1000 3 в троичной системе;

o в) от 14 8 до 20 8 в восьмеричной системе;

o г) от 28 16 до 30 16 в шестнадцатеричной системе.

4.14. Для десятичных чисел 47 и 79 выполните цепочку переводов из одной системы счисления в другую:

[ Ответ ]

4.15. Составьте таблицы сложения однозначных чисел в троичной и пятеричной системах счисления.
[ Ответ ]

4.16. Составьте таблицы умножения однозначных чисел в троичной и пятеричной системах счисления.
[ Ответ ]

4.17. Сложите числа, а затем проверьте результаты, выполнив соответствующие десятичные сложения:

[ Ответ ]

4.18. В каких системах счисления выполнены следующие сложения? Найдите основания каждой системы:

[ Ответ ]

4.19. Найдите те подстановки десятичных цифр вместо букв, которые делают правильными выписанные результаты (разные цифры замещаются разными буквами):

[ Ответ ]

4.20. Вычтите:

[ Ответ ]

4.21. Перемножьте числа, а затем проверьте результаты, выполнив соответствующие десятичные умножения:

а) 101101 2 и 101 2 ; д) 37 8 и 4 8 ;
б) 111101 2 и 11,01 2 ; е) 16 8 и 7 8 ;
в) 1011,11 2 и 101,1 2 ; ж) 7,5 8 и 1,6 8 ;
г) 101 2 и 1111,001 2 ; з) 6,25 8 и 7,12 8 .

[ Ответ ]

4.22. Разделите 10010110 2 на 1010 2 и проверьте результат, умножая делитель на частное.
[ Ответ ]

4.23. Разделите 10011010100 2 на 1100 2 и затем выполните соответствующее десятичное и восьмеричное деление.
[ Ответ ]

4.24. Вычислите значения выражений:

o а) 256 8 + 10110,1 2 * (60 8 + 12 10) - 1F 16 ;

o б) 1AD 16 - 100101100 2: 1010 2 + 217 8 ;

o в) 1010 10 + (106 16 - 11011101 2) 12 8 ;

o г) 1011 2 * 1100 2: 14 8 + (100000 2 - 40 8).

4.25. Расположите следующие числа в порядке возрастания:

o а) 74 8 , 110010 2 , 70 10 , 38 16 ;

o б) 6E 16 , 142 8 , 1101001 2 , 100 10 ;

o в) 777 8 , 101111111 2 , 2FF 16 , 500 10 ;

o г) 100 10 , 1100000 2 , 60 16 , 141 8 .

4.26. Запишите уменьшающийся ряд чисел +3, +2, ..., -3 в однобайтовом формате:

o а) в прямом коде;

o б) в обратном коде;

o в) в дополнительном коде.

4.27. Запишите числа в прямом коде (формат 1 байт):

а) 31; б) -63; в) 65; г) -128.
[ Ответ ]

4.28. Запишите числа в обратном и дополнительном кодах (формат 1 байт):

а) -9; б) -15; в) -127; г) -128.
[ Ответ ]

4.29. Найдите десятичные представления чисел, записанных в дополнительном коде:

а) 1 1111000; б) 1 0011011; в) 1 1101001; г) 1 0000000.
[ Ответ ]

4.30. Найдите десятичные представления чисел, записанных в обратном коде:

а) 1 1101000; б) 1 0011111; в) 1 0101011; г) 1 0000000.
[ Ответ ]

4.31. Выполните вычитания чисел путем сложения их обратных (дополнительных) кодов в формате 1 байт. Укажите, в каких случаях имеет место переполнение разрядной сетки:

а) 9 - 2; г) -20 - 10; ж) -120 - 15;
б) 2 - 9; д) 50 - 25; з) -126 - 1;
в) -5 - 7; е) 127 - 1; и) -127 - 1.

[ Ответ ]

Лекция 4. Арифметические основы компьютеров

Процессор выполняет арифметические и логические операции над двоичными кодами. Поэтому для получения представления об устройстве компьютера, необходимо познакомиться с основными логическими элементами, лежащими в основе его построения. Для понимания принципа работы таких элементов начнем это знакомство с основных начальных понятий алгебры логики.

Логика - это наука о формах и способах мышления. Это учение о способах рассуждений и доказательств. Понятие - это форма мышления, которая выделяет существенные признаки предмета или класса предметов, позволяющие отличать их от других. Пример Прямоугольник, проливной дождь, компьютер – это понятия.

Высказывание - это формулировка своего понимания окружающего мира. Высказывание является повествовательным предложением, в котором что-либо утверждается или отрицается. Истинным будет высказывание, в котором связь понятий правильно отражает свойства и отношения реальных вещей. Ложным высказывание будет в том случае, когда оно противоречит реальной действительности.

Пример «Буква «а» - гласная» - истинное высказывание. «Компьютер был изобретён в середине 19 века» ложное высказывание.

Задание. Какие из предложений являются высказываниями? Определите их истинность. 1. Какой длины эта лента? (не является высказыванием) 2. Делайте утреннюю зарядку! (не является высказыванием) 3. Париж - столица Англии. (является ложным высказыванием) 4. Число 11 является простым. (является истинным высказыванием) 5. 4 + 5 = 10 (является ложным высказыванием) 6. Без труда не вытащишь и рыбку из пруда. (является истинным высказыванием) 7. Некоторые медведи живут на севере. (является истинным высказыванием) 8. Все медведи - бурые. (является ложным высказыванием)

Умозаключение - это форма мышления, с помощью которой из одного или нескольких суждений может быть получено новое суждение (знание или вывод). Пример Дано высказывание: «Все углы равнобедренного треугольника равны» . Получите высказывание «Этот треугольник равносторонний» путём умозаключений.

ЛОГИЧЕСКИЕ ВЫРАЖЕНИЯ И ОПЕРАЦИИ Алгебра логики - это наука об общих операциях, аналогичных сложению и умножению, которые выполняются над высказываниями.

Логическая переменная - это простое высказывание, содержащее только одну мысль. Её символическое обозначение - латинская буква (например, A, B, X, Y и т. д.) Составное высказывание - логическая функция, которая содержит несколько простых мыслей, соединённых между собой с помощью логических операций. Её символическое обозначение - F(A, B, …). На основе простых высказываний могут быть построены составные высказывания.

Логические операции - логическое действие. Таблица истинности - таблица, определяющая значение сложного высказывания при всех возможных значениях простых высказываний. Рассмотрим три базовые логические операции - конъюнкцию, дизъюнкцию и отрицание и дополнительные - импликацию и эквиваленцию.

Если составное высказывание (логическую функцию) выразить в виде формулы, в которую войдут логические переменные и знаки логических операций, то получится логическое выражение, значение которого можно вычислить. Значением логического выражения могут быть только ЛОЖЬ или ИСТИНА. При составлении логического выражения необходимо учитывать порядок выполнения логических операций, а именно: действия в скобках; инверсия, конъюнкция, дизъюнкция, импликация, эквиваленция.

Пример Запишите в виде логического выражения следующее высказывание: «Летом Петя поедет в деревню и, если будет хорошая погода, то он пойдёт на рыбалку» . Проанализируем составное высказывание. Оно состоит из следующих простых высказываний: «Петя поедет в деревню» , «Будет хорошая погода» , «Он пойдёт на рыбалку» . Обозначим их через логические переменные: А = Петя поедет в деревню; В = Будет хорошая погода; С = Он пойдёт на рыбалку. Запишем высказывание в виде логического выражения, учитывая порядок действий. Если необходимо, расставим скобки: F = A & (B → C).



Похожие публикации